
Coflow: A Networking Abstraction for Distributed Data-Parallel Applications

by

N M Mosharaf Kabir Chowdhury

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Sylvia Ratnasamy

Professor John Chuang

Fall 2015

Coflow: A Networking Abstraction for Distributed Data-Parallel Applications

Copyright © 2015
by

N M Mosharaf Kabir Chowdhury

1

Abstract

Coflow: A Networking Abstraction for Distributed Data-Parallel Applications

by

N M Mosharaf Kabir Chowdhury

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Over the past decade, the confluence of an unprecedented growth in data volumes and the rapid
rise of cloud computing has fundamentally transformed systems software and corresponding in-
frastructure. To deal with massive datasets, more and more applications today are scaling out to
large datacenters. These distributed data-parallel applications run on tens to thousands of ma-
chines in parallel to exploit I/O parallelism, and they enable a wide variety of use cases, including
interactive analysis, SQL queries, machine learning, and graph processing.

Communication between the distributed computation tasks of these applications often result in
massive data transfers over the network. Consequently, concentrated efforts in both industry and
academia have gone into building high-capacity, low-latency datacenter networks at scale. At the
same time, researchers and practitioners have proposed a wide variety of solutions to minimize
flow completion times or to ensure per-flow fairness based on the point-to-point flow abstraction
that forms the basis of the TCP/IP stack.

We observe that despite rapid innovations in both applications and infrastructure, application-
and network-level goals are moving further apart. Data-parallel applications care about all their
flows, but today’s networks treat each point-to-point flow independently. This fundamental mis-
match has resulted in complex point solutions for application developers, a myriad of configuration
options for end users, and an overall loss of performance.

The key contribution of this dissertation is bridging this gap between application-level per-
formance and network-level optimizations through the coflow abstraction. Each multipoint-to-
multipoint coflow represents a collection of flows with a common application-level performance
objective, enabling application-aware decision making in the network. We describe complete so-
lutions including architectures, algorithms, and implementations that apply coflows to multiple
scenarios using central coordination, and we demonstrate through large-scale cloud deployments
and trace-driven simulations that simply knowing how flows relate to each other is enough for bet-
ter network scheduling, meeting more deadlines, and providing higher performance isolation than
what is otherwise possible using today’s application-agnostic solutions.

In addition to performance improvements, coflows allow us to consolidate communication op-
timizations across multiple applications, simplifying software development and relieving end users

2

from parameter tuning. On the theoretical front, we discover and characterize for the first time the
concurrent open shop scheduling with coupled resources family of problems. Because any flow is
also a coflow with just one flow, coflows and coflow-based solutions presented in this dissertation
generalize a large body of work in both networking and scheduling literatures.

i

To my family

ii

Contents

Contents ii

List of Figures vii

List of Tables xiii

Acknowledgements xiv

1 Introduction 1
1.1 Problems Due to Application-Agnostic Networking 3
1.2 The Coflow Abstraction . 4
1.3 Scheduling Using Coflows . 5

1.3.1 Schedulers Proposed in this Dissertation 5
1.3.2 Scheduler Architecture . 7

1.4 Summary of Results . 7
1.5 Organization . 8

2 Background 10
2.1 Communication in Distributed Data-Parallel Applications 10

2.1.1 MapReduce . 12
2.1.2 Dataflow Pipelines . 12
2.1.3 Bulk Synchronous Parallel (BSP) . 13
2.1.4 Partition-Aggregate . 13
2.1.5 Summary of Communication Requirements 14

2.2 Datacenter Networks . 14
2.2.1 Topologies . 14
2.2.2 Forwarding, Routing, Load Balancing, and Traffic Engineering 15
2.2.3 The Non-Blocking Fabric Model . 16

2.3 Optimizing Communication of Data-Parallel Applications 16
2.3.1 Traditional Size- and Deadline-Agnostic Approaches 17
2.3.2 Size-Aware Approaches . 17
2.3.3 Deadline-Aware Approaches . 17
2.3.4 The Need for Application-Awareness . 18

iii

2.4 Summary . 18

3 Coflows and Their Applications 20
3.1 The Coflow Abstraction . 20

3.1.1 What is (in) a Coflow? . 21
3.1.2 Coflow Categories Based on Information Availability 22
3.1.3 Objectives . 22
3.1.4 Composability . 23

3.2 Benefits of Coflows . 23
3.2.1 Comparison to Per-Flow Fairness . 23
3.2.2 Comparison to Per-Flow Prioritization . 24

3.3 Summary . 25

4 Intra-Coflow Scheduling 26
4.1 Background . 26
4.2 Solution Outline . 27
4.3 Motivating Applications . 28

4.3.1 Logistic Regression . 28
4.3.2 Collaborative Filtering . 29

4.4 The Broadcast Coflow . 30
4.4.1 Existing Solutions . 30
4.4.2 Cornet: BitTorrent for Datacenters . 31
4.4.3 Topology-Aware Cornet . 31
4.4.4 Size-Aware Broadcast Algorithm Selection 32

4.5 The Shuffle Coflow . 33
4.5.1 Bottlenecks and Optimality in Shuffle . 34
4.5.2 Load Balancing in Current Implementations 35
4.5.3 Minimum Allocation for Desired Duration (MADD) 36

4.6 Evaluation . 37
4.6.1 Comparison of Broadcast Mechanisms . 37
4.6.2 Topology-Aware Cornet . 41
4.6.3 Minimum Allocation for Desired Duration (MADD) 43
4.6.4 End-to-End Results on Full Applications 44

4.7 Related Work . 45
4.8 Summary . 46

5 Clairvoyant Inter-Coflow Scheduling 47
5.1 Background . 47
5.2 Solution Outline . 48
5.3 Potential Benefits of Inter-Coflow Scheduling . 49
5.4 Varys Overview . 50

5.4.1 Problem Statement . 50

iv

5.4.2 Architectural Overview . 51
5.5 Clairvoyant Coflow Scheduling: Analytical Results 52

5.5.1 Problem Formulation and Complexity . 52
5.5.2 Desirable Properties and Tradeoffs . 53
5.5.3 Inter-Coflow Scheduling to Minimize CCT 53
5.5.4 Inter-Coflow Scheduling to Guarantee Deadline 57

5.6 Design Details . 57
5.6.1 Varys Client Library: The Coflow API . 57
5.6.2 Inter-Coflow Scheduling in Varys . 59

5.7 Evaluation . 60
5.7.1 Methodology . 61
5.7.2 Varys’s Performance in Minimizing CCT 62
5.7.3 Varys’s Performance for Deadline-Sensitive Coflows 65
5.7.4 Impact of Preemption . 66
5.7.5 Impact on Network Utilization . 67
5.7.6 Impact of Coflow Mix . 67
5.7.7 Impact of Cluster/Network Load . 68

5.8 Discussion . 69
5.9 Related Work . 70
5.10 Summary . 71

6 Non-Clairvoyant Inter-Coflow Scheduling 72
6.1 Background . 72
6.2 Solution Outline . 73
6.3 Motivation . 74

6.3.1 Challenges . 74
6.3.2 Potential Gains . 75

6.4 Aalo Overview . 76
6.4.1 Problem Statement . 76
6.4.2 Architectural Overview . 76

6.5 Scheduling Without Prior Knowledge . 77
6.5.1 Complexity and Desirable Properties . 78
6.5.2 Priority Discretization . 79
6.5.3 Tradeoffs in Designing Coflow Schedulers 79
6.5.4 Discretized Coflow-Aware Least-Attained Service 80
6.5.5 Summary . 83

6.6 Handling Uncertainties . 83
6.6.1 Multi-Stage Dataflow DAGs . 83
6.6.2 Dynamic Coflow Modifications . 85

6.7 Design Details . 85
6.7.1 Pipelined Coflow API . 85
6.7.2 Coflow Scheduling in Aalo . 86

v

6.8 Evaluation . 87
6.8.1 Methodology . 87
6.8.2 Aalo’s Overall Improvements . 88
6.8.3 Impact of Runtime Dynamics . 91
6.8.4 Impact on DAG Scheduling . 93
6.8.5 Sensitivity Analysis . 94
6.8.6 Aalo’s Scalability . 96

6.9 Discussion . 97
6.10 Related Work . 97
6.11 Summary . 98

7 Fair Inter-Coflow Scheduling 99
7.1 Background . 99
7.2 Solution Outline . 101
7.3 Preliminaries . 102

7.3.1 Assumptions and Notations . 102
7.3.2 Intra-Coflow Fair Sharing Requirements 103

7.4 Challenges and Inefficiencies of Existing Solutions 104
7.4.1 Full Utilization but Suboptimal Isolation Guarantee 104
7.4.2 Optimal Isolation Guarantee but Low Utilization 105
7.4.3 Naive Work Conservation Reduces Optimal Isolation Guarantee 105
7.4.4 Naive Work Conservation can Even Decrease Utilization 106
7.4.5 Summary . 107

7.5 HUG: Analytical Results . 107
7.5.1 Root Cause of the Tradeoff: Unrestricted Sharing of Spare Resources . . . 108
7.5.2 The Optimal Algorithm: HUG . 108
7.5.3 HUG Properties . 110

7.6 Design Details . 112
7.6.1 Architectural Overview . 112
7.6.2 VM Placement and Re-Placement/Migration 113
7.6.3 Additional Constraints . 113

7.7 Evaluation . 113
7.7.1 Methodology . 114
7.7.2 Benchmarks . 114
7.7.3 Instantaneous Fairness . 116
7.7.4 Long-Term Characteristics . 118

7.8 Related Work . 121
7.9 Summary . 122

8 Conclusions and Future Work 124
8.1 Lessons Learned . 124
8.2 Impact . 126

vi

8.2.1 Theoretical Impact . 126
8.2.2 Real-World Impact . 127

8.3 Future Work . 128
8.3.1 Scheduling-Routing Co-Design for Coflows Over General Graphs 128
8.3.2 Coflow Identification Without Application Modification 128
8.3.3 Decentralized Coflow Schedulers . 129
8.3.4 Decoupling Bandwidth and Latency for Hierarchical Coflow Scheduling . . 130
8.3.5 Coflow-Aware Infrastructure Design . 131
8.3.6 Analyses of Concurrent Open Shop Scheduling With Coupled Resources . 131
8.3.7 Generalization to Multiple Resource Types 131
8.3.8 Communication-Driven Application Design 132

8.4 Final Remarks . 132

A Coflows in Production 133
A.1 The Facebook Trace . 133
A.2 Impact of Shuffle Coflows . 133
A.3 Coflow Characteristics . 135

A.3.1 Diversity of Coflow Structures . 135
A.3.2 Heavy-Tailed Distribution of Coflow Size 138

A.4 Coflow Arrival Over Time and Concurrency . 138

B Clairvoyant Inter-Coflow Scheduling 139
B.1 Problem Formulation and Complexity in the Offline Case 139
B.2 Tradeoffs in Optimizing CCT . 140
B.3 Ordering Properties of Coflow Schedules . 141

C Non-Clairvoyant Inter-Coflow Scheduling 143
C.1 Coflow Scheduling with Local Knowledge . 143
C.2 Continuous vs. Discretized Prioritization . 143

D Fair Inter-Coflow Scheduling 145
D.1 Dual Objectives for Fair Inter-Coflow Scheduling 145
D.2 Work Conservation VS. Strategy-proofness Tradeoff 146

D.2.1 Demand-Agnostic Policies . 148
D.2.2 Unfair Policies . 148
D.2.3 Locally Fair Policies . 149

D.3 Properties of HUG . 149

Bibliography 152

vii

List of Figures

1.1 Bandwidth allocations of two flows from application-1 (orange/light) of size (1 − δ)
and (1+δ), and one flow from application-2 (blue/dark) of size 1 on a single bottleneck
link of unit capacity. Both applications start at the same time. 2

1.2 Components built in this dissertation to enable application-aware networking using the
coflow abstraction. Any application can take advantage of coflows using the coflow API. 2

1.3 Coflows in the software stack of distributed data-parallel applications. Similar to com-
pute and storage abstractions, coflows expose application-level relationships to the
network. In contrast, traditional point-to-point flows from different applications are
indistinguishable. 4

1.4 Centralized coordination architecture used in this dissertation. 7
1.5 [EC2] Performance comparison between coflow-based solutions and the state-of-the-

art: (a) communication time in each iteration of a logistic regression application; (b)
average CCT of a SQL (Hive) workload from Facebook trace; and (c) minimum net-
work share across coflows in MapReduce applications. The Y-axis in (c) is in log scale. 8

2.1 Communication patterns in distributed data-parallel applications: (a) Shuffle and CFS
replication in MapReduce [77]; (b) Shuffle across multiple MapReduce jobs in dataflow
pipelines that use MapReduce as a building block (e.g., Hive [8]); (c) Dataflow pipelines
without explicit barriers (e.g., Dryad [119]); (d) Dataflow with cycles and broadcast
support (e.g., Spark [208]); (e) Bulk Synchronous Parallel (e.g., Pregel [147]); (f)
Aggregation during partition-aggregate communication in online services (e.g., user-
facing backend of search engines and social networks). 11

2.2 A 3 × 3 datacenter fabric with three ingress/egress ports corresponding to the three
machines connected to it. Flows in ingress ports are organized by destinations. Links
connecting machines to the network (highlighted in red/bold) are the only points of
congestion; the network itself is a black-box. 16

2.3 Three flows from application-1 (orange/light) and one flow from application-2 (blue/dark)
on a single bottleneck link of unit capacity. Each flow has one unit of data to send and
a deadline of one time unit. (a) Fair sharing of flows without size or deadline informa-
tion. (b) One of the 4 possible smallest-flow-first or earliest-deadline-first schedules.
(c) The optimal schedule with application-level information. 18

viii

3.1 Graphical representations of data-parallel applications using coflows. Circles represent
parallel tasks and edges represent coflows. 21

3.2 A 3× 2 shuffle demonstrating the drawbacks of coflow-agnostic schemes. (a) The two
receivers (at the bottom) need to fetch separate pieces of data from each sender, with
the one sending twice as much as the rest. (b) The same shuffle on a 3 × 3 datacenter
fabric with three ingress/egress ports. Flows in ingress ports are organized by destina-
tions and color-coded by receivers. (c)–(e) Allocation of egress port capacities (vertical
axis) using different mechanisms, where each port can transfer one unit of data in one
time unit. Corresponding shuffle completion times for (c) the optimal schedule is 4
time units; (d) per-flow fairness is 5 time units; and (e) per-flow prioritization is 6 time
units. 24

4.1 Per-iteration workflow diagrams for our motivating machine learning applications. The
circle represents the master machine and the boxes represent the set of worker machines. 29

4.2 [EC2] Communication and computation times per iteration when scaling the collabo-
rative filtering job using HDFS-based broadcast. 29

4.3 A 3 × 2 shuffle. (a) The two receivers (at the bottom) need to fetch separate pieces
of data, depicted as boxes of different colors, from each sender. (b) The same shuffle
on 3 × 3 datacenter fabric with three ingress/egress ports. Flows in ingress ports are
organized by destinations and color-coded by receivers. 33

4.4 Different bottleneck locations dictating shuffle performance. 34
4.5 [EC2] Completion times for a shuffle with 30 senders and 1 to 30 receivers, as a func-

tion of the number of concurrent flows (from random senders) per receiver. 35
4.6 A shuffle configuration where MADD outperforms per-flow fairness. Senders s1 to sN

sends one data unit only to receiver r1, senders sN+1 to s2N sends one data unit only to
receiver r2, and sN+1 sends N data units to both the receivers. 36

4.7 [EC2] Completion times of different broadcast mechanisms for varying data sizes. . . . 38
4.8 [EC2] CDF of completion times of individual receivers while transferring 1 GB to

100 receivers using different broadcast mechanisms. Legend names are ordered by the
topmost points of each line, i.e., when all the receivers completed receiving. 39

4.9 [EC2] Broadcast completion times for 10 MB data. 40
4.10 [EC2] Cornet completion times for varying block sizes. 41
4.11 [DETERlab] Cornet completion times when the rack topology is unknown, given, and

inferred using clustering. 41
4.12 Two-dimensional, non-metric projection of receiver machines based on a distance ma-

trix of machine-to-machine block transfer times. The triangles, squares, and circles in
(a) represent racks A, B, and C respectively in the DETERlab testbed. 42

4.13 Shuffle configurations used in MADD evaluation. The arrows show the number of units
of data sent from each mapper to each reducer. 43

4.14 [EC2] Per-iteration completion times for the logistic regression application before and
after using Cornet and MADD. 44

ix

4.15 [EC2] Per-iteration completion times when scaling the collaborative filtering applica-
tion using MADD. 44

5.1 Coflow scheduling over a 3 × 3 datacenter fabric with three ingress/egress ports (a).
Flows in ingress ports are organized by destinations and color-coded by coflows – C1

in orange/light and C2 in blue/dark. Allocation of ingress port capacities (vertical axis)
using different mechanisms for the coflows in Figure 5.1a. Each port can transfer one
unit of data in one time unit. The average FCT and CCT for (b) per-flow fairness are
3.4 and 4 time units; (c) per-flow prioritization are 2.8 and 3.5 time units; (d) WSS are
3.6 and 4 time units; and (e) the optimal schedule are 3 and 3 time units. 50

5.2 Varys architecture. Computation frameworks use the VarysClient library to interact
with Varys. 52

5.3 Allocations of egress port capacities (vertical axis) for the coflows in (a) on a 3 × 3
fabric for different coflow scheduling heuristics. 55

5.4 [EC2] Average and 95th percentile improvements in job and communication comple-
tion times over per-flow fairness using Varys. 62

5.5 [EC2] Improvements in the average and 95th percentile CCTs using coflows w.r.t. the
default per-flow fairness mechanism. 63

5.6 CCT distributions for Varys, per-flow fairness, and per-flow prioritization schemes (a)
in EC2 deployment and (b) in simulation. The X-axes are in logarithmic scale. 64

5.7 [Simulation] Improvements in the average and 95th percentile CCTs using inter-coflow
scheduling. 64

5.8 [EC2] Percentage of coflows that meet deadline using Varys in comparison to per-flow
fairness. Increased deadlines improve performance. 65

5.9 [Simulation] More coflows meet deadline using inter-coflow scheduling than using
per-flow fairness and prioritization schemes. 66

5.10 [EC2] Improvements in the average CCT using coflows for different coflow mixes
from Table 5.4. 67

5.11 [Simulation] Improvements in the average CCT for varying numbers of concurrent
coflows. 68

5.12 [Simulation] Changes in the percentage of coflows that meet deadlines for varying
numbers of concurrent coflows. 68

6.1 Online coflow scheduling over a 3× 3 datacenter fabric with three ingress/egress ports
(a). Flows in ingress ports are organized by destinations and color-coded by coflows –
C1 in orange/light, C2 in blue/dark, and C3 in black. Coflows arrive online over time
(b). Assuming each port can transfer one unit of data in one time unit, (c)–(f) depict
the allocations of ingress port capacities (vertical axis) for different mechanisms: The
average CCT for (c) per-flow fairness is 5.33 time units; (d) decentralized LAS is 5
time units; (e) CLAS with instant coordination is 4 time units; and (f) the optimal
schedule is 3.67 time units. 75

x

6.2 Aalo architecture. Computation frameworks interact with their local Aalo daemons
using a client library, and the daemons periodically coordinate to determine the global
ordering of coflows. 76

6.3 Discretized Coflow-Aware Least-Attained Service. Consecutive queues hold coflows
with exponentially larger size. 80

6.4 Coflow dependencies in TPC-DS query-42: (a) Query plan generated by Shark [203];
boxes and arrows respectively represent computation and communication stages. (b)
Finishes-Before relationships between coflows are represented by arrows. (c) CoflowIds
assigned by Aalo. 84

6.5 [EC2] Average and 95th percentile improvements in job and communication comple-
tion times using Aalo over per-flow fairness and Varys. 89

6.6 [EC2] Improvements in the average and 95th percentile CCTs using Aalo over per-flow
fairness and Varys. 89

6.7 [EC2] CCT distributions for Aalo, Varys, and per-flow fairness mechanism. The X-axis
is in log scale. 90

6.8 [Simulation] Average improvements in CCTs using Aalo. 95th percentile results are
similar. 91

6.9 [Simulation] CCT distributions for Aalo, Varys, per-flow fairness, and uncoordinated
non-clairvoyant coflow scheduling. Both X-axes and the Y-axis of (b) are in log scale. . 92

6.10 [EC2] Average improvements in CCTs w.r.t. Varys for multi-wave coflows. 93
6.11 [EC2] Improvements in job-level communication times using Aalo for coflow DAGS

in the Cloudera benchmark. 93
6.12 [Simulation] Aalo’s sensitivity (measured as improvements over per-flow fairness) to

(a) the number of queues, (b) the size of the highest-priority queue, and (c) exponential
and (d) linear queue thresholds. 94

6.13 [Simulation] Improvements in average CCTs using Aalo (a) when coflow sizes are
uniformly distributed up to different maximum values and (b) when all coflows have
the same size. 95

6.14 [EC2] Aalo scalability: (a) more daemons require longer coordination periods (Y-axis
is in log scale), and (b) delayed coordination can hurt overall performance (measured
as improvements over per-flow fairness). 96

7.1 Bandwidth allocations in two independent links (a) for CA (orange) with correlation
vector

−→
dA = 〈1

2
, 1〉 andCB (dark blue) with

−→
dB = 〈1, 1

6
〉. Shaded portions are unallocated.100

7.2 CoflowsCA (orange) andCB (dark blue) and their communication patterns over a 3×3
datacenter fabric. The network fabric has three uplinks (L1–L3) and three downlinks
(L4–L6) corresponding to the three physical machines. 102

7.3 Bandwidth consumptions of CA (orange) and CB (dark blue) with correlation vectors−→
dA = 〈1

2
, 1〉 and

−→
dB = 〈1, 1

6
〉 using PS-P [124, 171, 172]. Both coflows have elastic

demands. 104

xi

7.4 Bandwidth consumptions of CA (orange) and CB (dark blue) with correlation vectors−→
dA = 〈1

2
, 1〉 and

−→
dB = 〈1, 1

6
〉, when both have elastic demands. (a) Optimal isolation

guarantee in the absence of work conservation. With work conservation, (b) CA in-
creases its progress at the expense of CB, and (c) CB can do the same, which results in
(d) a prisoner’s dilemma. 105

7.5 Payoff matrix for the example in Section 7.4. Each cell shows progress of CA and CB. . 106
7.6 Bandwidth consumptions of CA (orange) and CB (dark blue) with correlation vectors−→

dA = 〈1
2
, 1〉 and

−→
dB = 〈1, 1

6
〉, when neither has elastic demands. (a) Optimal isolation

guarantee allocation is not work-conserving. With work conservation, (b) utilization
can increase or (c) decrease, based on which coflow lies. (d) However, ultimately it
lowers utilization. Shaded means unallocated. 107

7.7 Allocations with maximum achievable utilizations and optimal isolation guarantees for
CA (orange) and CB (dark blue). 109

7.8 Design space for cloud network sharing. 110
7.9 Communication patterns of CX and CY with (a) two minimum cuts of size P , where

P is the number of fabric ports, and (b) one minimum cut of size 1. The size of the
minimum cut of a communication pattern determines its effective bandwidth even if it
were placed alone. 111

7.10 Bandwidth allocation of CA at a particular VM, while CB connects to increasingly
larger number of destinations from that same VM. 114

7.11 [EC2] Bandwidth consumptions of three coflows arriving over time in a 100-machine
EC2 cluster. Each coflow has 100 VMs, but each uses a different communication pat-
tern (§7.7.2). (b) HUG isolates coflows CA and CC from coflow CB. 116

7.12 [Simulation] HUG ensures higher isolation guarantee than high-utilization schemes
such as per-flow fairness and PS-P, and provides higher utilization than multi-resource
fairness schemes such as DRF. 117

7.13 [Simulation] Slowdowns of coflows using different mechanisms w.r.t. the minimum
CCTs. Both X-axes and the Y-axis of (b) are in log scale. 119

7.14 [Simulation] Average and 95th percentile improvements in CCT using HUG. 120
7.15 [Simulation] CCTs using different mechanisms w.r.t. the minimum completion times.

Both X-axes and the Y-axis of (b) are in log scale. 121

8.1 Networks with multiple paths between sender-receiver pairs or with link failures can
have in-network bottlenecks. 129

A.1 CDFs of the fraction of end-to-end job completion time spent in the shuffle stage in
320, 000 Facebook MapReduce jobs with reduce stages. 135

A.2 Coflows in production vary widely in their (a) lengths, (b) widths, (c) skews of flow
sizes, (d) total sizes, and (e) bottleneck locations. Moreover, (f) numerous small coflows
contribute to a small fraction of network footprint. 136

A.3 Upper bounds on the numbers of concurrent coflows and flows throughout one day.
Time is in GMT. 137

xii

B.1 Allocation of ingress port capacities (vertical axis) for the coflows in (a) on a 2×2 dat-
acenter fabric for (b) a work-conserving and (c) a CCT-optimized schedule. Although
the former schedule is work-conserving and achieves higher utilization, the latter has
a lower average CCT. 141

B.2 Flow-interleaved allocation of egress port capacities (vertical axis) for the coflows in
(a) for CCT-optimality (b). 141

D.1 Hard tradeoff between work conservation and strategy-proofness. Adding one more
coflow (CC in black) to Figure 7.4 with correlation vector 〈1, 0〉makes simultaneously
achieving work conservation and optimal isolation guarantee impossible, even when
all three coflows have elastic demands. 147

D.2 Allocations after applying different work-conserving policies to divide spare band-
width in link-2 for the example in Figure D.1. 147

xiii

List of Tables

2.1 Summary of communication requirements in distributed data-parallel applications. . . 13

3.1 Coflows in distributed data-parallel applications. 21

4.1 Broadcast mechanisms compared. 38
4.2 [EC2] Completion times in seconds for MADD compared to a standard shuffle imple-

mentation for the shuffles in Figure 4.13. Standard deviations are in parentheses. 43

5.1 The Coflow API . 58
5.2 Jobs binned by time spent in communication. 61
5.3 Coflows binned by length (Short and Long) and width (Narrow and Wide). 61
5.4 Four extreme coflow mixes from the Facebook trace. 67

6.1 Qualitative comparison of coflow scheduling algorithms. 81
6.2 Jobs binned by time spent in communication. 87
6.3 Coflows binned by length (Short and Long) and width (Narrow and Wide). 88
6.4 Coflows binned by the number of waves. 92

7.1 Notations and definitions in HUG. 108
7.2 Coflows binned by length (Short and Long) and width (Narrow and Wide). 118
7.3 [Simulation] Slowdowns using different mechanisms w.r.t. the minimum CCTs. 119

A.1 Summary of Facebook traces. 134

xiv

Acknowledgements

First and foremost I thank Allah, the Lord of the worlds, the Beneficent, and the Merciful, for
enabling me to complete this task.

I am immensely grateful to my advisor, Ion Stoica, who pushed me to focus on one problem
at a time, to go deep into the details of each one, and to find the nugget. He instilled in me a deep
appreciation for simplicity in design and clarity in presentation. He also gave me ample freedom
and the right amount of guidance throughout my graduate studies. I am especially thankful for
his honest feedback that improved me as a researcher and a person. My research benefited greatly
from Ion’s insistence on doing great work.

This dissertation is the culmination of many successful collaborations: Chapters 2 and 3 build
upon joint work with Ion Stoica [65]; Chapter 4 includes materials from joint work with Matei
Zaharia, Justin Ma, Michael Jordan, and Ion Stoica [67] and with Yuan Zhong and Ion Stoica [68];
Chapter 5 was joint work with Yuan Zhong and Ion Stoica [68]; Chapter 6 was joint work with Ion
Stoica [66]; and Chapter 7 was joint work with Zhenhua Liu, Ali Ghodsi, and Ion Stoica [64].

I am thankful to my dissertation committee and qualifying examination committee members
Sylvia Ratnasamy, John Chuang, Marti Hearst, and Scott Shenker for useful feedback. I especially
thank Randy Katz for the two conversations that bookended my time in Berkeley – the former
convinced me to come to Berkeley, while the latter guided my departure. Outside Berkeley, I am
thankful to Srikanth Kandula for being a great mentor and an enthusiastic collaborator.

I am grateful to many colleagues in Berkeley and elsewhere for supporting my research as col-
laborators and reviewers. Across many projects not covered in this dissertation, I had been fortunate
to collaborate with Sameer Agarwal, Dilip Joseph, Michael Franklin, Scott Shenker, Tathagata Das
(TD), Ankur Dave, Murphy McCauley, Gautam Kumar, Sylvia Ratnasamy, Lucian Popa, Arvind
Krishnamurthy, Peter Bodik, Ishai Menache, David Maltz, Pradeepkumar Mani, Srikanth Kandula,
Rachit Agarwal, and Vyas Sekar. I learned something useful from each one of them.

The AMPLab and RAD Lab were amazing communities, who gave constant feedback. Matei
demonstrated how to build and maintain large systems; Ganesh Ananthanarayanan had been an
invaluable sounding board; Ali had wikipedic knowledge on many things computer science; and
David Zats had pointers to most related work. The CCN group was the toughest audience I pre-
sented my ideas to. My work became stronger because of the heated arguments in CCN meetings.
I thank Justine Sherry, Shivaram Venkataraman, and Neil Conway for gently critiquing many of
our drafts. Finally, the support staff had been excellent; on several occasions, Jon Kuroda managed
impromptu backup machines right before important deadlines.

xv

My internships at Microsoft Research Cambridge (UK) and Microsoft Research Redmond/Bing
as well as my time at Facebook gave me wonderful opportunities to experience research and work
at industry labs and the industry. I am thankful to my mentors and managers – Christos Gkantsidis,
Hitesh Ballani, David Maltz, and Hairong Kuang – for enabling many learning experiences.

I am thankful for a UC Berkeley Graduate Fellowship, a Facebook Fellowship, and to the many
federal and industry sponsors of the AMPLab and RAD Lab.

Many friends in Berkeley enriched my life outside work. Bill Marczak had been a constant
presence for the first three years when we shared apartments. I had countless dinner outings and
movie nights with Atif Rahman, Khalid Ashraf (Mishu), Muhammed Karim (Rumi), Bill, Sameer,
and TD. The Bangladeshi community in Berkeley was the source of many fond memories. Special
thanks to Asif Khan, Nadia Nusrat, Atif, Mishu, Rumi, Ulfat Obaidi (Rimi), Imran Khan, Yasser
Khan (Tasif), Sifat Muin (Ishita), Suman Hossain, Arefa Hossain (Shumi), Ariful Azad, Rubaya
Parveen (Ishita), Urmita Sikder, Iqbal Haider (Sumon), Nafisa Akbar, and Inaya. Thanks to my
numerous friends and well-wishers all over the world.

Although my graduate studies have been long, it is only a part of a much longer narrative. I
want to thank all my teachers in Arab Mission Public School, Dhaka College, BUET, and the Uni-
versity of Waterloo. Among many outstanding teachers, mentors, and role models that shaped and
supported my education and career are: Shahida Akhter, Md Nezam Uddin, Abdul Latif Salampuri,
ATM Shakhawat Hossain, Mohammad Kaykobad, Reaz Ahmed, and Raouf Boutaba. Mohammad
walked me through my first publication. Raouf gave me free rein to work on problems I liked
during my Master’s and allowed me to discover the joy of research.

I would like to express my deepest gratitude to my parents and siblings for their love and sup-
port. My mother, Shahida Akhter, is my guru. None of my achievements would have been possible
without her countless sacrifices, infinite patience, and steely determination to give me the best pos-
sible education. She raised me to aim for the moon and taught me to keep trying until I succeed. My
father, Alamgir Chowdhury (Aalo), instilled the sense of duty and responsibility in me. He passed
away too soon, but he would have been the proudest to see my achievements. Shafiul Chowdhury
(Raki), my brother, is younger only in age and elder in practice. He weathers many storms back
in Bangladesh to shield me from the real world and continuously encourages me to carry on. I
am thankful to my parents-in-law, Muhammad Musharraf Hussain and Mahmuda Musharraf, who
encourage and support my decision to be in the academia. Special thanks to Rubana Chowdhurys,
Deena Hussain, Mahmud Hussain, Nusrah Hussain, and Aleena for being who they are. I am grate-
ful for having a supportive extended family.

Last but not least, I am profoundly indebted to my wife Bushra Hussain for her love, un-
derstanding, support, and sacrifices. She provides a sense of normalcy and keeps me grounded
regardless of all the ups and downs in life. This journey would have felt much longer and more
stressful without having her beside me.

1

Chapter 1

Introduction

The confluence of an unprecedented growth in data volumes and the rapid rise of cloud computing
has fundamentally transformed systems software and corresponding infrastructure over the past
decade. More and more applications today are dealing with large datasets from diverse sources.
These sources range from user activities collected from traditional and mobile webs to data col-
lected from connected equipment and scientific experiments. To make sense of all these datasets,
researchers and practitioners in both academia and industry are building applications to enable,
among others, SQL queries [8, 9, 22, 43, 135, 203], log analysis [6, 77, 208], machine learning ac-
tivities [98, 136, 152], graph processing [101, 146, 147], approximation queries [22, 31], stream
processing [23, 27, 32, 157, 209], and interactive analysis [22, 208].

Furthermore, to deal with growing data volumes in a fast and efficient manner, these appli-
cations are scaling out to large datacenters to exploit I/O parallelism. Distributed data-parallel
applications such as these run on many machines in parallel by dividing the entire work – a job –
into smaller pieces – individual tasks. They interact with cluster resource managers [105,117,195]
to receive CPU, memory, and disk resources and use a variety of techniques to schedule tasks,
handle failures, mitigate stragglers, and manage in-memory and on-disk datasets [39, 40, 55, 120,
145, 198, 207, 210]. For communication, however, each application implements its own library on
top of TCP/IP to manage data transfers between tasks running on different machines.

To meet the growing bandwidth demand of distributed data-parallel applications, concentrated
efforts have gone into building high-capacity, low-latency datacenter networks [69, 88, 106, 108,
110, 158, 186, 199]. To take advantage of these resources, networking researchers have also pro-
posed a wide variety of solutions to minimize flow completion times or to ensure per-flow fair-
ness [33,35,37,45,80,87,118,121,192,200,201] based on the point-to-point flow abstraction that
forms the basis of the TCP/IP stack.

However, despite rapid innovations in both applications and infrastructure, application- and
network-level goals are moving further apart. Data-parallel applications care about all their flows,
but the network today treats each point-to-point flow independently. This fundamental mismatch
has resulted in complex point solutions for application developers, a myriad of configuration op-
tions for end users, and an overall loss of performance. For example, per-flow fairness causes
application-1 to receive more share in Figure 1.1a because it has more flows, instead of both appli-

CHAPTER 1. INTRODUCTION 2

2 3
Time

Ba
nd
wi
dt
h

1 2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

(a) Per-flow fairness

2 3
Time

Ba
nd
wi
dt
h

1 2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

(b) Application-aware
fairness

2 3
Time

Ba
nd
wi
dt
h

1 2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

(c) Per-flow prioritization

2 3
Time

Ba
nd
wi
dt
h

1 2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

2 3
Time

Ba
nd
wi
dt
h

1

(d) Application-aware
prioritization

Figure 1.1: Bandwidth allocations of two flows from application-1 (orange/light) of size (1 − δ)
and (1 + δ), and one flow from application-2 (blue/dark) of size 1 on a single bottleneck link of
unit capacity. Both applications start at the same time.

Distributed Data-Parallel Applications

The Coflow Abstraction

Cornet & MADD

Intra-coflow
schedulers for
broadcast and shuffle

Varys

Clairvoyant
inter-coflow
scheduler

Aalo

Non-clairvoyant
inter-coflow
scheduler

HUG

Fair
inter-coflow
scheduler

Figure 1.2: Components built in this dissertation to enable application-aware networking using the
coflow abstraction. Any application can take advantage of coflows using the coflow API.

cations receiving the same (Figure 1.1b). Similarly, while the network minimizes the average flow
completion time by prioritizing smaller flows in Figure 1.1c, application-2 completes in 2 time
units instead of the optimal 1 time unit (Figure 1.1d). In both cases, flow-level optimal solutions
are suboptimal at the application level.

How do we realign these goals? That is, how do we enable application-network symbiosis to
improve application-level performance and end user experience? This dissertation argues that the
answer lies in exposing the communication characteristics of applications to the network. Specif-
ically, we present the coflow abstraction to capture the collective behavior of flows in distributed
data-parallel applications. We apply coflows to multiple scenarios (Figure 1.2) to demonstrate that
simply knowing how flows relate to each other is enough for minimizing job completion times,
meeting deadlines, and providing performance isolation, and it can take us far beyond than what is
otherwise possible today.

Not only do coflows improve application-level performance without additional resource usage,
but they also allow us to consolidate communication optimizations, simplifying software develop-
ment and relieving end users from parameter tuning. Additionally, coflows allow us to reason about

CHAPTER 1. INTRODUCTION 3

complex dependencies in distributed data-parallel applications and can be composed together to
capture those dependencies. Because any flow is also a coflow with just one flow, coflows and
coflow-based solutions presented in this dissertation generalize a large body of work in both net-
working and scheduling literatures.

In the remainder of this chapter, we highlight the motivations for application-aware networking,
overview the coflow abstraction and its applications, and summarize our results.

1.1 Problems Due to Application-Agnostic Networking
The flow abstraction used in today’s networks was designed for point-to-point client-server ap-
plications. Consequently, solutions based on this abstraction [33, 35, 37, 45, 80, 87, 118, 121, 192,
200, 201] optimize the network assuming that today’s distributed data-parallel applications have
the same requirements and characteristics as their decades-old counterparts. To compensate for the
lack of a proper abstraction, most of these applications [6,8,43,101,119,146,208,209] implement
customized communication libraries and expose a large number of tuning parameters to end users.
The mismatch between application- and network-level objectives leads to several shortcomings:

1. Optimization of Irrelevant Objectives: Application-agnostic network-level solutions op-
timize metrics such as the average flow completion time and per-flow fairness that prefer-
entially or equally treat flows without knowing their collective impact on application-level
performance. They often do not lead to performance improvements and sometimes even hurt
applications (Figure 1.1).

2. Simplistic Models: Given that point-to-point flows cannot even capture a single communi-
cation stage, flow-based solutions are unsuitable for reasoning about complex dependencies
within multi-stage applications and between several of them in a data-processing pipeline,
let alone optimizing their performance objectives.

3. Point Solutions: Most distributed data-parallel applications face a common set of under-
lying data transfer challenges. For example, the many-to-many communication pattern be-
tween two groups of tasks in successive computation stages – i.e., a shuffle – occurs in all
these applications. The same goes for a broadcast or an aggregation. Without a common
abstraction, we must address the same challenges anew for every application we build.

4. Best-Effort Network Sharing: Because every application implements its own set of op-
timization techniques, the network is shared between multiple applications in a best-effort
manner. There is no notion of a global objective, be it minimizing the average completion
time across all applications or providing performance isolation among them.

5. Limited Usability: For end users, too many parameters can be hard to understand and dif-
ficult to tune even for a single application. A shared environment further compounds this
problem. Without knowing what others are tuning for, one cannot hope for better than best-
effort, and the same parameter settings may behave unpredictably across multiple runs.

CHAPTER 1. INTRODUCTION 4

Distributed
Data-Parallel
Applications

Compute
Abstraction:

Jobs

Storage
Abstraction:

Distributed Datasets

Networking
Abstraction:

Flows Coflows

Application-Agnostic Networking Application-Aware Networking

Figure 1.3: Coflows in the software stack of distributed data-parallel applications. Similar to com-
pute and storage abstractions, coflows expose application-level relationships to the network. In
contrast, traditional point-to-point flows from different applications are indistinguishable.

1.2 The Coflow Abstraction
We introduce the coflow abstraction to address these problems. The key insight behind coflows is
one simple observation: a communication stage in a distributed data-parallel application cannot
complete until all its flows have completed. Meaning, applications do not care about individual
flows’ completion times or fair sharing among them – the last flow of an application dictates its
completion. A coflow captures this all-or-nothing characteristic of a collection of flows, and it is
the first abstraction to expose this to the network (Figure 1.3).

The all-or-nothing observation had been captured for other resource types in data-parallel clus-
ters – e.g., a job represents a set of tasks and a distributed file or dataset represents a collection of
on-disk or in-memory data blocks – and are leveraged in almost all aspects of building systems,
improving performance, scheduling resources, and providing fault tolerance [6, 31, 39, 40, 55, 77,
95, 101, 117, 119, 145, 147, 191, 208–210]. What makes coflows unique and more general is the
coupled nature of the network – unlike independent resources such as CPU speed or disk/memory
capacity, one must consider both senders and receivers to allocate network resources.

The key advantage of coflows is that they enable us to reason about application-level objec-
tives when optimizing network-level goals such as performance, utilization, and isolation. This is
crucial because application-agnostic solutions are often at odds with application-level metrics. For
example, we show that improving a coflow’s completion time (CCT) improves the completion time

CHAPTER 1. INTRODUCTION 5

of its parent job, even when it hurts traditional metrics such as flow completion time or flow-level
fairness. Furthermore, this improvement is achieved without any additional resources.

Coflows can be extended and composed to go beyond what is possible from just capturing
the collective characteristic of some flows. For instance, when we have information about the to-
tal number of flows in a coflow or individual flow sizes, we can annotate coflows and use this
information to improve performance or provide better isolation. Similarly, using the dependency
information between the computation stages of complex jobs – i.e., the ones represented by di-
rected acyclic graphs or DAGs – we can combine coflows while maintaining their dependencies in
the DAG. Because any flow is also a coflow with just one flow, coflows are general.

Coflows also make a qualitative difference in application development. Despite diverse end
goals, distributed data-parallel applications use a common set of multipoint-to-multipoint commu-
nication patterns – formed by a collection of point-to-point flows – with a handful of optimization
objectives. Instead of reimplementing the same set of communication patterns in every application
and trying to optimize them using tens of user-tunable parameters, coflows allow applications to
offload this responsibility to a separate system such as Varys or Aalo presented in this dissertation.
This reduces work duplication, simplifies application logic, and enables coherent optimizations.

Finally, we prove why coordination cannot be avoided in coflow-based solutions. We also show
empirically that, for long-running coflows, it is better to incur small coordination overheads (e.g.,
8 ms in our 100-machine cluster and 992 ms for a 100, 000-machine emulated datacenter) than
avoiding it altogether. Our implementations carefully disregard coflows with durations shorter than
coordination overheads, because they have smaller overall impact.

1.3 Scheduling Using Coflows
We used coflows to optimize individual communication patterns prevalent in distributed data-
parallel applications and to improve performance across multiple applications for objectives such
as minimizing the average completion time, ensuring coflow completions within deadlines, and
providing isolation. In all cases, coflows enabled us to reason about the collective nature of com-
munication in modern applications and go beyond what is possible using previous solutions.

1.3.1 Schedulers Proposed in this Dissertation
We discuss four applications of coflows to improve the communication performance for individual
applications and across multiple applications in this dissertation.

1. Intra-Coflow Scheduling: Shuffle and broadcast are the two key communication patterns
in modern distributed data-parallel applications. Traditional flow-based solutions improve
flow-level fairness or flow completion times, but they ignore the collective nature of all the
flows in a shuffle or a broadcast.

For broadcasts, we proposed Cornet that implements a BitTorrent-like protocol [72]. It dif-
fers in one key aspect: Cornet attempts to accelerate the slowest participant instead of throt-

CHAPTER 1. INTRODUCTION 6

tling it – the slowest one is the one that matters the most. For shuffles, we proposed an
optimal algorithm called Minimum Allocation for Desired Duration (MADD) that explicitly
sets data-proportional rates, ensuring that all the flows finish together with the slowest flow.

2. Clairvoyant Inter-Coflow Scheduling: Due to the high operating expense of large clusters,
operators aim to maximize cluster utilization, while accommodating a variety of applications
and workloads. This causes communication stages from multiple applications to coexist.
Existing solutions suffer even more in shared environments. Smaller flows in each collection
complete faster, but the larger ones lag behind and slow down entire communication stages.

For many applications, coflow-level information – e.g., the number of flows in a coflow
or individual flow sizes – are known a priori or can be estimated well [30, 77, 147, 208].
We designed Varys to capitalize on this observation and to perform clairvoyant inter-coflow
scheduling to minimize the average coflow completion time and to ensure coflow comple-
tions within deadlines. Varys uses MADD as a building block and proposes Smallest Effec-
tive Bottleneck First (SEBF) to interpret the well-known Shortest-First heuristic in the con-
text of coflows. In the process, we discovered and characterized the concurrent open-shop
scheduling with coupled resources problem.

3. Non-Clairvoyant Inter-Coflow Scheduling: In many cases, coflow characteristics can be
unknown a priori. Examples include applications with multiple coflows between successive
computation stages [9,73,119,181], when all tasks in a computation stage are not scheduled
together [39], and when some tasks are restarted to mitigate failures or stragglers [40, 207,
210]. This raises a natural question: how to schedule coflows without complete knowledge?

We proposed Aalo to perform non-clairvoyant coflow scheduling. Aalo interprets the classic
Least-Attained Service (LAS) scheduling discipline in the context of coflows using Dis-
cretized Coflow-Aware Least-Attained Service (D-CLAS) and closely approximates Varys’s
performance without prior information. We showed that capturing how individual flows re-
late to each other using coflows is the key to extracting most of the benefits.

4. Fair Inter-Coflow Scheduling: Efficient coflow schedulers improve only the average-case
performance. However, they cannot isolate coflows in multi-tenant environments such as
public clouds, where tenants can be non-cooperative unlike those in private datacenters. Ex-
isting flow-level solutions perform even worse in terms of providing isolation. Algorithms
for multi-resource fairness (e.g., DRF [97]) provide isolation, but they can arbitrarily de-
crease network utilization.

We proposed High Utilization with Guarantees (HUG) to achieve the highest possible uti-
lization while maximizing performance isolation between coflows from different tenants in
non-cooperative environments. We proved that full utilization, i.e., work conservation, is
not possible in such environments because work conservation incentivizes tenants to lie.
In the process, we generalized single- [80, 121, 165] and multi-resource max-min fairness
[83, 97, 112, 166] and multi-tenant network sharing solutions [124, 140, 171, 172, 179, 184].

CHAPTER 1. INTRODUCTION 7

Master/Coordinator

Network Interface

f Computation tasks

Local
Daemon

Local
Daemon

Local
Daemon

CoordinationCoflow Scheduler

Figure 1.4: Centralized coordination architecture used in this dissertation.

Furthermore, HUG is work-conserving in cooperative environments such as private datacen-
ters, where tenants are guaranteed not to lie.

1.3.2 Scheduler Architecture
For each of the aforementioned coflow scheduling solutions, we built systems following the high-
level architecture shown in Figure 1.4. The master or the coordinator orchestrates coflows us-
ing centralized coordination. Applications use the coflow API through a client library to register
coflows with the master, send or receive data, and provide coflow-level information, when avail-
able. The master aggregates all interactions, creates a global view of the network, and determines
new schedules. Each machine runs a daemon that interacts with local client library instances to
enforce the global schedule determined by the master.

There are two primary ways to trigger coordination: (1) on coflow lifecycle events such as ar-
rival, departure, and update; and (2) periodically. The former results in tight coordination, which
is more accurate but adds coordination overheads to small coflows. The latter enables loose coor-
dination, which scales better but loses efficiency due to local decisions in between coordination
periods. Depending on information availability, we explored both directions in different solutions
– MADD, Varys, and HUG coordinate on lifecycle events, while Cornet and Aalo use periodic
coordination.

1.4 Summary of Results
We evaluated our solutions by deploying them on 100-machine Amazon EC2 clusters and through
trace-driven simulations using workloads collected from a 3000-machine Facebook production
cluster. Please refer to Appendix A for more details on the workload. We also performed micro-

CHAPTER 1. INTRODUCTION 8

Varys
Aalo

0

5

10

15

20

25

30

35

TCP Fair
Sharing

MADD +
Cornet

Ti
m

e (
s)

Broadcast

Shuffle

(a) Intra-coflow scheduling

TCP$Fair$Sharing 43
Varys 21
Aalo 23

0

5

10

15

20

25

30

35

40

45

TCP Fair
Sharing

Varys Aalo

Av
er

ag
e

C
of

lo
w

 C
om

p.
 T

im
e (

s)

(b) Efficient inter-coflow scheduling

TCP$Fair$Sharing 0.0001096 114.924978
PS6P 0.10027 105140.718
HUG 0.73725432 773067.188

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

TCP Fair
Sharing

PS-P HUG

M
in

im
um

 S
ha

re
 (K

bp
s)

(c) Fair inter-coflow scheduling

Figure 1.5: [EC2] Performance comparison between coflow-based solutions and the state-of-the-
art: (a) communication time in each iteration of a logistic regression application; (b) average CCT
of a SQL (Hive) workload from Facebook trace; and (c) minimum network share across coflows
in MapReduce applications. The Y-axis in (c) is in log scale.

benchmarks using individual machine learning applications that use communication-heavy algo-
rithms such as logistic regression and collaborative filtering.

Figure 1.5 presents a quick summary of the benefits of coflow scheduling – both in improving
the performance of individual applications and across multiple applications – by comparing our
solutions against the existing flow-based mechanisms, namely TCP fair sharing [80, 121] as well
as network sharing algorithms such as PS-P [124, 171, 172] in EC2 experiments.

In addition to quantitative results, we discuss challenges in scalability and fault-tolerance of
centralized coordination-based solutions and present general techniques to address them. We also
cover how the choice between a blocking and a non-blocking user-facing API – e.g., in Varys
and Aalo, respectively – impact architectural design decisions and vice versa. Finally, throughout
the dissertation, we enforce the generality of coflows in our assumptions and design decisions to
ensure long-term adoption.

1.5 Organization
The remainder of this dissertation is organized as follows. Chapter 2 provides relevant background
information. First, it surveys popular distributed data-parallel applications to identify common
communication patterns. Next, it overviews advances in modern datacenter networks that enable
us to model them as non-blocking fabrics. Finally, it summarizes existing solutions and emphasizes
the necessity of application-aware networking.

Chapter 3 introduces coflows, categorizes them based on information availability, describes
coflow-level objectives, and provides intuitions into why coflows would outperform flow-based

CHAPTER 1. INTRODUCTION 9

solutions. Chapter 4 uses intra-coflow scheduling on two of the most common communication
patterns. It presents a scalable algorithm for broadcast coflows as well as the optimal algorithm for
shuffle coflows. Both improve performance by exploiting the fact that a coflow cannot complete
until all its flows have completed.

Chapters 5, 6, and 7 address three inter-coflow scheduling problems using central coordination.
Chapters 5 and 6 both focus on improving the average coflow completion time. However, the for-
mer uses complete information, while the latter performs almost as good even without complete
information. Chapter 5 also describes how to support deadline-sensitive coflows, and introduces as
well as characterizes the concurrent open shop scheduling with couple resources family of prob-
lems. Chapter 7 focuses on fair inter-coflow scheduling to provide performance isolation among
coexisting coflows and generalizes single- and multi-resource fairness as well as multi-tenant net-
work sharing under one unifying framework.

Finally, we summarize the broader impacts of this dissertation, discuss the lessons we have
learned, and conclude by identifying directions for future work in Chapter 8.

10

Chapter 2

Background

Over the past decade, we have observed major transformations in how systems software and corre-
sponding infrastructure are built. On the one hand, more and more applications (e.g., MapReduce)
are scaling out to large clusters, taking advantage of I/O parallelism to deal with growing data
volumes. On the other hand, concentrated efforts have gone into building high-capacity datacen-
ters (e.g., Clos topologies) to support efficient execution of distributed data-parallel applications.
In the process, the traditional point-to-point, client-server communication model has been super-
seded by higher-level communication patterns that involve multiple machines communicating with
each other. In this chapter, we discuss the communication patterns that appear in modern scale-out
applications, datacenter networks where these communications take place, and existing efforts in
improving the performance of these patterns.

The remainder of this chapter is organized as follows. Section 2.1 discusses a wide variety of
data-parallel applications – ranging from query processing and graph processing to search engines
– and distills the commonalities among their communication requirements. Section 2.2 provides
an overview of the infrastructure side. More specifically, it presents a taxonomy of modern data-
center network topologies along with forwarding, routing, and traffic engineering schemes used in
those networks, and concludes by presenting the non-blocking fabric model of modern datacenter
networks. Section 2.3 surveys the recent advances in optimizing the communication performance
of distributed data-parallel applications and highlights the disconnect between application-level
requirements and existing network-level optimizations. Section 2.4 concludes this chapter by sum-
marizing our findings.

2.1 Communication in Distributed Data-Parallel Applications
Most distributed data-parallel applications are frameworks (e.g., MapReduce [77]) that take user-
defined jobs and follow specific workflows enabled by corresponding programming models. Some
others are user-facing pipelines, where user requests go through a multi-stage architecture to even-
tually send back corresponding responses (e.g., search results from Google or Bing, home feed in

CHAPTER 2. BACKGROUND 11

…

… tasks

master

Join

map-reduce
units from (a)

…

aggregator

aggregators

workers …

mappers

reducers

…

…

…

…
write

barrier

…

…

barrier

superstep(i+1)

superstep(i)

Join

vertex
sets

(a) MapReduce

(c) Dataflow without explicit barriers

(b) Dataflow with barriers

(d) Dataflow with cycles

(e) Bulk Synchronous Parallel (BSP) (f) Partition-aggregate

Figure 2.1: Communication patterns in distributed data-parallel applications: (a) Shuffle and CFS
replication in MapReduce [77]; (b) Shuffle across multiple MapReduce jobs in dataflow pipelines
that use MapReduce as a building block (e.g., Hive [8]); (c) Dataflow pipelines without explicit
barriers (e.g., Dryad [119]); (d) Dataflow with cycles and broadcast support (e.g., Spark [208]); (e)
Bulk Synchronous Parallel (e.g., Pregel [147]); (f) Aggregation during partition-aggregate com-
munication in online services (e.g., user-facing backend of search engines and social networks).

CHAPTER 2. BACKGROUND 12

Facebook). In this section, we study communication patterns of prevalent distributed data-parallel
applications (Figure 2.1) and summarize their requirements.

We assume that tasks that participate in communication across computation stages are sched-
uled before communication takes place using one of the many available task schedulers for data-
parallel frameworks [40, 120, 164, 207].

2.1.1 MapReduce
MapReduce [6, 77] is a well-known and widely used distributed data-parallel framework. In this
model, each map tasks (mapper) reads its input from the cluster file system (CFS) [55,95], performs
user-defined computations, and writes intermediate data to the disk. In the next stage, each reduce
task (reducer) pulls intermediate data from different mappers, merges them, and writes its output to
the CFS, which then replicates it to multiple destinations. The communication stage of MapReduce
– i.e., the transferring of data from each mapper to each reducer – is known as the shuffle.

Given M mappers and R reducers, a MapReduce job will create a total of M × R flows for
shuffle, and at least r flows for output replication in the CFS. The primary characteristic of com-
munication in the MapReduce model is that a job will not finish until its last reducer has finished.
Consequently, there is an explicit barrier at the end of the job.

2.1.2 Dataflow Pipelines
While MapReduce had been very popular throughout most of the past decade, it is not the most
expressive of data-parallel frameworks. There exist a collection of general dataflow pipelines that
address many deficiencies of MapReduce, and they have diverse communication characteristics.
Typically, these frameworks exposes a SQL-like interface (e.g., Hive [8], DryadLINQ [206], Spark-
SQL [43]) to the users, and execute user queries using an underlying processing engine.

Dataflow with Barriers Some dataflow pipelines that support multiple stages use MapReduce
as their building blocks (e.g., Sawzall [170], Pig [163], Hive [8]). Consequently, there are barriers
at the end of each building block, and this paradigm is no different than MapReduce in terms of
communication.

Dataflow without Explicit Barriers Several dataflow pipelines do not have explicit barriers
and enable higher-level optimizations of the operators (e.g., Dryad [119], DryadLINQ [206],
SCOPE [58], FlumeJava [59], MapReduce Online [73]); a stage can start as soon as some input
is available. Because there is no explicit barrier, barrier-synchronized optimization techniques are
not useful. Instead, researchers have focused on understanding the internals of the communication
and optimizing for specific scenarios [111, 212].

Dataflow with Cycles Traditional dataflow pipelines unroll loops to support iterative computa-
tion requirements. Spark [208] obviates loop unrolling by keeping in-memory states across itera-
tions. However, implicit barriers at the end of each iteration allow MapReduce-like communication

CHAPTER 2. BACKGROUND 13

Model Barrier Type Barrier Reason Loss Tolerance
MapReduce Explicit Write to CFS None
Dataflow with Barriers Explicit Write to CFS None
Dataflow w/o Explicit Barriers Implicit Input not ready None
Dataflow with Cycles Explicit End of iteration None
Bulk Synchronous Parallel Explicit End of superstep None
Partition-Aggregate Explicit End of deadline App. Dependent

Table 2.1: Summary of communication requirements in distributed data-parallel applications.

optimizations in cyclic dataflows [67]. These frameworks also explicitly support communication
primitives such as broadcast, whereas, MapReduce-based frameworks rely of replicating to CFS
and reading from the replicas to perform broadcast.

2.1.3 Bulk Synchronous Parallel (BSP)
Bulk Synchronous Parallel or BSP is another well-known model in distributed data-parallel com-
puting. Examples of frameworks using this model include Pregel [147], Giraph [5], Hama [7],
and GraphX [101] that focus on graph processing, matrix computation, and network algorithms. A
BSP computation proceeds in a series of global supersteps, each containing three ordered stages:
concurrent computation, communication between processes, and barrier synchronization. With ex-
plicit barriers at the end of each superstep, the communication stage can be globally optimized for
the superstep.

However, sometimes complete information is not needed for reasonably good results; iterations
can proceed with partial results. GraphLab [146] is such a framework for machine learning and
data mining on graphs. Unlike BSP supersteps, iterations can proceed with whatever information
is available as long as it converging; missing information can asynchronously arrive later.

2.1.4 Partition-Aggregate
User-facing online services (e.g., search results in Google or Bing, Facebook home feeds) receive
requests from users and send it downward to the workers using an aggregation tree [54]. At each
level of the tree, individual requests generate activities in different partitions. Ultimately, worker
responses are aggregated and sent back to the user within strict deadlines – e.g., 200 to 300 millisec-
onds [35, 192, 200]. Responses that cannot make it within the deadline are either left behind [200]
or sent later asynchronously (e.g., Facebook home feed).

2.1.5 Summary of Communication Requirements
Despite differences in programming models and execution mechanisms, most distributed data-
parallel applications have one thing in common: they run on a large number of machines that are

CHAPTER 2. BACKGROUND 14

organized into multiple stages or grouped by functionality. Each of these groups communicate
between themselves using a few common patterns (e.g., shuffle, broadcast, and aggregation) with
a handful of objectives:

1. minimizing completion times,

2. meeting deadlines, and

3. fair allocation among coexisting entities.

While the former two objectives are prevalent in private datacenters, the latter is more common for
cloud-hosted solutions such as Amazon Elastic MapReduce (EMR) [4].

Table 2.1 summarizes the key characteristics of the aforementioned distributed data-parallel
applications in terms of the characteristics of barriers, their primary causes, and the ability of
applications to withstand loss (i.e., whether all flows must complete or not) or delay. Note that ap-
proximation frameworks such as BlinkDB [31] perform sampling before running jobs on sampled
datasets. Consequently, their communication stages also rely on all the flows completing.

2.2 Datacenter Networks
The proliferation of distributed data-parallel computing has coincided with and even enabled by
the rise of public cloud computing [3,15,20] and private datacenters [48,106]. Consequently, com-
munication in these applications invariably rely on underlying datacenter networks. In this section,
we provide a quick overview of modern datacenter topologies and mechanisms used in different
layers, and conclude by introducing the non-blocking fabric model of a datacenter network.

2.2.1 Topologies
Typical datacenters consist of tens to hundreds of thousands of machines [48] and require high-
capacity networks between to them to ensure high-performance distributed applications [106,158].
While oversubscription was common in early three-tier, tree-based topologies, modern datacenter
networks have shifted toward high and even full bisection bandwidth [88,106,108,110,158,199].1

Modern datacenter topologies can broadly be divided into four categories:

1. Switch-Centric topologies use switches as internal nodes of a datacenter network, which
connect servers at the leaves. PortLand [158] and VL2 [106] are two well-known examples
of this approach. In broad strokes, they use a special instance of a Clos topology [69] to
interconnect commodity Ethernet switches to emulate a fat tree [143] and provide full bisec-
tion bandwidth. Switch-centric topologies are arguably the most widely-deployed datacenter
topologies today, with deployments at Amazon, Microsoft, and Google [106, 186].

1Bisection bandwidth is the maximum amount of bandwidth in a data center is measured by bisecting the network
graph at any given point. In a full bisection bandwidth network, machines in one side of the bisection can use their
entire bandwidth while communicating with the machines on the other side.

CHAPTER 2. BACKGROUND 15

2. Server-Centric topologies use servers as relay nodes in addition to switches. BCube [108],
DCell [110], and CamCube [29] are a few representative examples. While these topologies
empirically provide high bisection bandwidth, determining their exact bisection bandwidth
remain open in many cases [42].

3. Hybrid Electrical/Optical designs combine fast switching speeds of electrical switches
with high-bandwidth optical circuits to build scale-out datacenter networks. Examples in-
clude c-Through [199], Helios [88], and OSA [61]. In these designs, top-of-the-rack (ToR)
switches are simultaneously connected to both networks through an electrical and an optical
port. Followups of hybrid designs (e.g., Mordia [173]) often focus on low-latency switching
in the optical part to allow small-to-medium flows use the available bandwidth.

4. Malleable topologies rely on wireless and optics [114, 115, 214] to flexibly provide high-
bandwidth in different paths instead of creating full bisection bandwidth networks. The key
challenge in this case is again fast circuit creation in presence of dynamic load changes.

Apart from these, an interesting design point is random topologies – most notably Jellyfish [187]
– that argue for randomly wiring components to achieve high bisection bandwidth.

In practice, however, Clos topology is the primary datacenter topology today: a recent report
from Google (circa 2015) suggests that it is indeed possible to build full-bisection bandwidth net-
works with up to 100, 000 machines, each with 10 GbE NICs, for a total capacity of 1 Pbps [186].

2.2.2 Forwarding, Routing, Load Balancing, and Traffic Engineering
Regardless of design, modern datacenter topologies invariably provide multiple paths between
each pair of machines for fault tolerance and better load balancing. Forwarding and routing in
datacenters are topology-dependent, each with its own sets of pros and cons [60].

A more active area of research, however, is load balancing and traffic engineering across mul-
tiple paths. The traditional Equal Cost MultiPath (ECMP) load balancing suffers from significant
imbalance due to hash collisions in presence of a few large flows [33, 34, 51]. This is primarily
due to the fact that ECMP uses only local information. Hedera [33] and MicroTE [51] take a
centralized traffic engineering approach to overcome ECMP’s shortcomings. MPTCP [177] takes
a host-based, transport layer approach for better load balancing, whereas CONGA [34] takes an
in-network approach. There are many other proposals in between these extremes that we do not
elaborate on for brevity.

The ideal goal of all these proposals is to restrict possibilities of congestion toward the edge of
full bisection bandwidth networks. This decouples host-level network resource management from
the network itself and allow concurrent innovation in both areas.

2.2.3 The Non-Blocking Fabric Model
Given the focus on building Clos-based full bisection bandwidth networks and restricting conges-
tion to network edges, we can abstract out the entire datacenter network as one non-blocking fabric

CHAPTER 2. BACKGROUND 16

1

2

3

1

2

3

Ingress Ports
(Machine Uplinks)

Egress Ports
(Machine Downlinks)

DC Fabric

4

3

Figure 2.2: A 3 × 3 datacenter fabric with three ingress/egress ports corresponding to the three
machines connected to it. Flows in ingress ports are organized by destinations. Links connecting
machines to the network (highlighted in red/bold) are the only points of congestion; the network
itself is a black-box.

or switch [34,37,46,68,86,129] and consider machine uplinks and downlinks, i.e., machine NICs,
as the only sources of contention. It is also known as the hose model representation.

In this model, each ingress port (uplink) has some flows for various egress ports (downlinks).
For ease of exposition, we organize them in Virtual Output Queues [151] at the ingress ports as
shown in Figure 2.2. In this case, there are two flows transferring 3 and 4 units of data from
machine-1 to machine-2 and from machine-2 to machine-3, respectively.

This model is attractive for its simplicity, and recent advances in datacenter fabrics [34, 106,
158,186] make it practical as well. However, we use this abstraction only to simplify our analyses;
we do not require nor enforce this in our evaluations.

2.3 Optimizing Communication of Data-Parallel Applications
Acknowledging the importance of communication on the performance of distributed data-parallel
applications [35,67,200] – e.g., Facebook MapReduce jobs spends a quarter of their runtime in the
shuffle stage on average (please refer to Chapter A for more details) – researchers and practitioners
have proposed many solutions optimized for datacenter and cloud environments. All of them work
on flows under the assumption that if tail-latency decreases or flows complete faster, applications
will experience performance improvements. Research in this direction have looked at dropping
flows [192,200], prioritization/preemption [37,118], and cutting long tails [35,211]; however, they
do not exploit application-level information about the collective nature of such communication.

In this section, we summarize these approaches by dividing them into three broad categories
based on the application-level information they do leverage. We also discuss why point-to-point
flows are insufficient for capturing the collective communication requirements of data-parallel ap-
plications.

CHAPTER 2. BACKGROUND 17

2.3.1 Traditional Size- and Deadline-Agnostic Approaches
Today’s datacenter networks run primarily on the TCP/IP stack using point-to-point flows between
two machines [35]. However, it is now well established that TCP is not the most suitable protocol
for datacenters [35–37,118,192,200,201,211], mainly because TCP was designed for the Internet
under a different set of assumptions than datacenters.

To make TCP more suitable for datacenters, a large body of solutions – mostly transport layer
(e.g., DCTCP [35], ICTCP [201]) with a few cross-layer (e.g., DeTail [211], HULL [36]) – have
been proposed in recent years. Most of them focus on making TCP faster in reacting to conges-
tions – thus, reducing tail latency – while maintaining fair sharing across coexisting flows. Given
that none of these proposals use any information about flow size or flow deadline, fairness is the
obvious objective. PIAS [45] is unique in that, unlike the rest, it directly focuses on reducing flow
completion time in a non-clairvoyant manner.

2.3.2 Size-Aware Approaches
Instead of indirectly impacting flow completion times through reductions in tail latency and faster
reactions to congestions, some proposals just assume that flow sizes are known. Given flow size in-
formation, PDQ [118] and pFabric [37] enforce shortest-flow-first prioritization discipline through-
out the datacenter. The intuition is the following: if flows complete faster, the communication
stages will complete faster and communication with deadlines will complete within their dead-
lines. While decreasing flow completion times, they do not distinguish between the applications
that are generating these flows.

2.3.3 Deadline-Aware Approaches
Another approach for increasing predictability in datacenters is using explicit knowledge of dead-
lines. Deadlines can be known directly from the applications (e.g., partition-aggregate traffic from
online services often have tens to hundreds of milliseconds deadlines [35,200]). Given these dead-
lines, most solutions reserve capacities throughout the entire path (e.g., PDQ [118], Silo [123]),
while some use a combination of reservation, congestion notification, and end host rate limiting
(e.g., D3 [200], D2TCP [192]). When flows miss deadlines, most of these proposals de-prioritize
them in the network; however, some have proposed completely quenching those flows [200].

2.3.4 The Need for Application-Awareness
Point-to-point flows are fundamentally independent. Below, we explain using a simple example
why independent flows inherently cannot capture the collective communication requirements of
data-parallel applications.

Consider two communication stages from two applications – application-1 with three flows
and application-2 with one flow – on a single bottleneck link. The link has unit capacity, and each

CHAPTER 2. BACKGROUND 18

1

2

3

1

2

3

Ingress Ports
(Machine Uplinks)

Egress Ports
(Machine Downlinks)

DC Fabric

4

3

2 4
Time 2 4

Time

Ba
nd
wi
dt
h

Ba
nd
wi
dt
h

2 4
Time

Ba
nd
wi
dt
h

(a) Size- and deadline-agnostic

1

2

3

1

2

3

Ingress Ports
(Machine Uplinks)

Egress Ports
(Machine Downlinks)

DC Fabric

4

3

2 4
Time 2 4

Time

Ba
nd
wi
dt
h

Ba
nd
wi
dt
h

2 4
Time

Ba
nd
wi
dt
h

(b) Size- or deadline-aware

1

2

3

1

2

3

Ingress Ports
(Machine Uplinks)

Egress Ports
(Machine Downlinks)

DC Fabric

4

3

2 4
Time 2 4

Time

Ba
nd
wi
dt
h

Ba
nd
wi
dt
h

2 4
Time

Ba
nd
wi
dt
h

(c) The optimal schedule

Figure 2.3: Three flows from application-1 (orange/light) and one flow from application-2
(blue/dark) on a single bottleneck link of unit capacity. Each flow has one unit of data to send
and a deadline of one time unit. (a) Fair sharing of flows without size or deadline information.
(b) One of the 4 possible smallest-flow-first or earliest-deadline-first schedules. (c) The optimal
schedule with application-level information.

flow has one data unit to send and a deadline of one time unit. We see that the lowest average flow
completion time is 2.5 time units, and at most one flow can complete within deadline.

Clearly, fair sharing will miss both goals (Figure 2.3a) by treating everyone equally. The aver-
age flow completion time is 4 time units and no flows complete within deadlines.

As we have discussed, recent proposals aim to circumvent these shortcomings by using addi-
tional information such as flow size and flow deadline. Figure 2.3b shows that they would think
they’ve been successful. The average flow completion time is indeed 2.5 time units due to shortest-
flow-first, and one flow has completed within the deadline of one time unit.

The question remains: do applications see any benefit from all these improvements? Unfortu-
nately, no. Figure 2.3c is the only schedule where an application has completed within its deadline
(i.e., application-2), and the average completion time of the communication stages of these two
applications is 2.5 time units. In contrast, both applications failed to meet their deadlines in both
Figure 2.3a and Figure 2.3b, and the average communication completion times are 4 and 3 time
units, respectively.

2.4 Summary
There are three high-level takeaways from this chapter.

1. Despite diverse end goals, distributed data-parallel applications use a common set of
multipoint-to-multipoint communication patterns with a handful of optimization objectives.

2. Modern datacenter networks actively attempt to push possibilities of contentions from inside
the network fabric to end hosts at the edges, so much so that we can effectively consider them
to be non-blocking fabrics.

CHAPTER 2. BACKGROUND 19

3. Existing techniques for optimizing communication performance of datacenter applica-
tions are unaware of application-level requirements. Consequently, they rarely improve
application-level performance and can even hurt applications.

In this dissertation, we develop a generalized abstraction for communication in datacenter ap-
plications, and we use it to enable application-aware network scheduling for all the application-
level objectives we have identified. In the next chapter, we present the core concept of our solution
– the coflow abstraction.

20

Chapter 3

Coflows and Their Applications

The key concept behind this dissertation is one simple observation: a communication stage in a dis-
tributed data-parallel application cannot complete until all its flows have completed. Surprisingly,
the networking literature does not provide any construct to express such collective requirements.
Specifically, the traditional point-to-point flow abstraction is fundamentally independent and can-
not capture a semantics, where the collective behavior of all the flows between two groups of
machines is more important than that of any individual flow. This lack of an abstraction has several
consequences: (i) it promotes point solutions with limited applicability; (ii) it results in solutions
that are not optimized for the appropriate objectives; and (iii) without an abstraction, it remains
difficult to reason about the underlying principles and to anticipate problems that might arise in the
future.

In this chapter, we introduce the coflow abstraction to capture diverse communication patterns
and corresponding objectives that we observed in distributed data-parallel applications (§2.1). The
chapter is organized in two parts. Section 3.1 defines the coflow abstraction, identifies different
categories of coflows and their characteristics, and summarizes common coflow-level objectives
that can be of interest to datacenter operators. Section 3.2 demonstrates with a simple exam-
ple how coflows enable significant application-level improvements that traditional application-
agnostic techniques simply cannot even for a single communication pattern. Finally, Section 3.3
summarizes our findings and presents an outline of how we use coflows to perform different opti-
mizations in subsequent chapters.

3.1 The Coflow Abstraction
Although individual point-to-point flows are indistinguishable at the transport layer, as we have
seen in Chapter 2, flows between groups of machines in a distributed data-parallel application
have application-level semantics. For example, the last flow in a shuffle determines its completion
time. Similarly, a delayed flow can cause an entire partition-aggregate communication pattern to
miss its deadline. In this section, we introduce the coflow abstraction that captures such collective
semantics and enables application-aware networking in datacenters.

CHAPTER 3. COFLOWS AND THEIR APPLICATIONS 21

Communication in Data-Parallel Apps Coflow Structure
Communication in dataflow pipelines [6, 8, 119, 208] Many-to-Many
Global communication barriers [147, 191] All-to-All
Broadcast [6, 119, 208] One-to-Many
Aggregation [6, 8, 77, 119, 208] Many-to-One
Parallel read/write on distributed storage [55, 58, 63, 145] Many One-to-One

Table 3.1: Coflows in distributed data-parallel applications.

…

… tasks

master

Join

map-reduce
units from (a)

…

aggregator

aggregators

workers …

mappers

reducers

…

…

…

…
write

barrier

…

…

barrier

superstep(i+1)

superstep(i)

Join

vertex
sets

(a) MapReduce

(c) Dataflow without explicit barriers

(b) Dataflow with barriers

(d) Dataflow with cycles

(e) Bulk Synchronous Parallel (BSP) (f) Partition-aggregate

mappers

reducers
shuffle

parallel
writes

(a) MapReduce

parallel
reads master

tasks

tasks
shuffle (Cs)

broadcast (Cb)

ag
gr

eg
at

io
n

(C
a)

(b) Spark

Figure 3.1: Graphical representations of data-parallel applications using coflows. Circles represent
parallel tasks and edges represent coflows.

3.1.1 What is (in) a Coflow?
A coflow is a collection of flows that share a common performance goal, e.g., minimizing the
completion time of the latest flow or ensuring that flows meet a common deadline. The flows of
a coflow are independent in that the input of a flow does not depend on the output of another
in the same coflow, and the endpoints of these flows can be in one or more machines. Examples
of coflows include the shuffle between the mappers and the reducers in MapReduce [77] and the
communication stage in the bulk-synchronous parallel (BSP) model [191]. Coflows can express
most communication patterns between successive computation stages of data-parallel applications
(Table 3.1) [65]. Note that traditional point-to-point flow is still a coflow with just a single flow.

We define the completion time of a coflow or CCT as the time duration between the beginning
of its first flow and the completion of its last.

Using coflows as building blocks, we can now represent any distributed data-parallel pipeline
as a sequence of machine groups connected by coflows. Figure 3.1 depicts the MapReduce and
Spark jobs in Figure 2.1(a) and Figure 2.1(d) using four different coflow patterns.

Formally, each coflow C(D) is a collection of flows over the datacenter fabric (§2.2.3) with P
ingress and P egress ports, where the P × P matrix D = [dij]P×P represents the structure of C.

CHAPTER 3. COFLOWS AND THEIR APPLICATIONS 22

For each non-zero element dij ∈ D, a flow fij transfers dij amount of data from the ith ingress
port (P in

i) to the jth egress port (Pout
j).

3.1.2 Coflow Categories Based on Information Availability
Depending on the availability of information about a coflow’s structure (e.g., the number of flows,
their endpoints, flow sizes, start times etc.), there can be two primary types of coflows.

1. Clairvoyant Coflows: We refer to a coflow to be clairvoyant when C(D) is known before
the coflow starts and it does not change over time. Applications that write their data to disk
before transferring to the next stage typically create coflows that fall in this category. A large
body of solutions [37,67,68,82,118] work under this assumption. For clairvoyant coflows, a
broadcast has only one non-zero row and an aggregation has one non-zero column in C(D).

2. Non-clairvoyant Coflows: When a coflow’s structure and relevant information are not com-
pletely known when it coflow starts or C(D) can change dynamically, we consider it to be
a non-clairvoyant coflow. This can happen due to multi-wave scheduling [39], in multi-level
DAGs with push-forward pipelining [9, 73, 119, 181], or due to task failures, restarts, and
speculative execution. Aalo [66] works on non-clairvoyant coflows.

3.1.3 Objectives
For an individual coflow, the objective is always to minimize its own CCT. However, data-parallel
clusters are often shared, and cluster operators can have higher-level across-cluster objectives.
Depending on the availability of information, there can be three primary objectives inter-coflow
resource sharing in a shared cluster.

1. Minimizing the average CCT aims to finish coflows faster on average and, thus, decrease job
completion times. This is a viable objective for both clairvoyant [68] and non-clairvoyant
[66, 67, 82] coflows.

2. Meeting deadlines attempts to maximize the number of coflows that meet their deadlines and
makes sure they succeed by employing admission control. Hard deadlines can be supported
only for clairvoyant coflows.

3. Fair sharing between coflows enables sharing between coflows at the risk of increasing the
average CCT. Unlike flow-level fair sharing on individual links, coflow-level fair sharing
requires considering the entire fabric. It is viable for both types of coflows.

In this dissertation, we develop solutions for optimizing all three objectives independently.
Note that some of the objectives can be combined as well. For example, assuming two priority
levels with deadline-sensitive coflows having the higher priority, one can try to first ensure timely
completion of deadline-sensitive coflows and then try to minimize the average CCT for coflows
that do not have any deadlines.

CHAPTER 3. COFLOWS AND THEIR APPLICATIONS 23

3.1.4 Composability
One of the most important characteristic of coflows is that they are composable. Meaning, one can
combine multiple coflows to create a new coflow or break one apart into many coflows, depending
on their objectives. For example, one can consider a shuffle with M mapper and R reducers an
M × R shuffle coflow or R M × 1 aggregation coflows. The former would directly impact job
completion times, whereas the latter would impact task completion times.

Dependencies The importance of composability becomes more prominent when consider coflow
dependencies in a multi-stage dataflow pipeline.

Figure 3.1(b) shows an example. The aggregation coflow (Ca) of each iteration depends on
the shuffle coflow (CS), which, in turn, depends on the broadcast (Cb). In the absence of explicit
barriers between task stages, all three can coexist. However, we can see that Ca cannot complete
beforeCs andCs beforeCb. If we consider them in isolation, we can end up with priority inversion.

Instead, we can compose another coflow C capturing the finishes-before dependencies between
all the coflows from the same application (Cb, Cs, and Ca), and allow the operator to optimize C
as a whole. Dependency information is used only to break internal ties. Indeed, not composing
coflows into a larger one can hurt application-level performance instead of improving it [66].

3.2 Benefits of Coflows
In this section, we demonstrate the benefits of coflows over the traditional flow abstraction us-
ing a simple example that involves just one communication pattern. Throughout the rest of this
dissertation, we present more applications of coflows in diverse settings and objectives.

3.2.1 Comparison to Per-Flow Fairness
In current systems, the flows between senders and receivers experience unweighted fair sharing
due to TCP. This can be suboptimal when the flows must transfer different amounts of data. For
example, consider the shuffle in Figure 3.2, where senders s1 and s2 have one unit of data for
each receiver and s3 has two units for both. Under fair sharing (Figure 3.2d), each receiver starts
fetching data at 1/3 units/second from the three senders. After 3 seconds, the receivers exhaust the
data on senders s1 and s2, and there is one unit of data left for each receiver on s3. At this point,
s3 becomes a bottleneck, and the receivers take 2 more seconds to transfer the data off, completing
the shuffle in 5 seconds. In contrast, in the optimal schedule (Figure 3.2c), the receivers would
fetch data at a rate of 1/4 units/second from s1 and s2 and 1/2 units/second from s3, finishing in 4
seconds (i.e., 1.25× faster).

We present the algorithm to achieve the optimal schedule, Minimum Allocation for Desired
Duration (MADD), in Section 4.5.

CHAPTER 3. COFLOWS AND THEIR APPLICATIONS 24

r1 r2

s2 s3s1

1

2

3

1

2

3
DC Fabric

1
1

2
2

1
1

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

r1 r2

s2 s3s1

(a) Logical view

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

1

2

3

1

2

3
DC Fabric

1
1

2
2

1
1

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

(b) Physical view

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

1

2

3

1

2

3
DC Fabric

1
1

2
2

1
1

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

(c) Optimal

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

1

2

3

1

2

3
DC Fabric

1
1

2
2

1
1

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

(d) Per-flow fairness

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

1

2

3

1

2

3
DC Fabric

1
1

2
2

1
1

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

2 4

P2

Time

P1

6

(e) Per-flow prioritization

Figure 3.2: A 3 × 2 shuffle demonstrating the drawbacks of coflow-agnostic schemes. (a) The
two receivers (at the bottom) need to fetch separate pieces of data from each sender, with the
one sending twice as much as the rest. (b) The same shuffle on a 3 × 3 datacenter fabric with
three ingress/egress ports. Flows in ingress ports are organized by destinations and color-coded by
receivers. (c)–(e) Allocation of egress port capacities (vertical axis) using different mechanisms,
where each port can transfer one unit of data in one time unit. Corresponding shuffle completion
times for (c) the optimal schedule is 4 time units; (d) per-flow fairness is 5 time units; and (e)
per-flow prioritization is 6 time units.

3.2.2 Comparison to Per-Flow Prioritization
A large body of recent work (e.g., pFabric [37], PDQ [118]) focus on flow-level prioritization and
schedule smaller flows first to minimize flow completion times (FCT), regardless of application- or
coflow-level objectives. Figure 3.2e demonstrates the drawback of these approaches. By focusing
on individual flows’ completion times, they lose the bigger picture: the shuffle completion time in
our example using per-flow prioritization (6 seconds) is 1.5× slower than the optimal schedule.
This is despite the fact that the average FCT for per-flow prioritization (2.67 seconds) is smaller
than both the optimal schedule (4 seconds) and per-flow fairness (3.67 seconds).

CHAPTER 3. COFLOWS AND THEIR APPLICATIONS 25

3.3 Summary
In this chapter, we have introduced, defined, categorized, and characterized the coflow abstraction.
In addition, we have demonstrated how the already available application-level information can
help in improving end-to-end communication performance despite an apparent loss of network-
level performance in terms of application-agnostic metrics.

In the subsequent chapters, we show coflows in action; i.e., how coflows can improve the com-
munication performance of individual applications (Chapter 4) and across multiple applications for
clairvoyant (Chapter 5) as well as for non-clairvoyant coflows (Chapter 6). Finally, in Chapter 7,
we demonstrate how to fairly divide the datacenter network among coexisting coflows.

26

Chapter 4

Intra-Coflow Scheduling

In this chapter, we present the first application of the coflow abstraction and demonstrate how
coflow awareness can result in faster communication stages – and, in turn, faster end-to-end com-
pletion of jobs – for distributed data-parallel applications. Unlike traditional application-agnostic
approaches, the proposed solutions leverage a simple observation that is embedded in the defini-
tion of a coflow – a communication stage cannot complete until all its flows have completed. We
apply the observation to two of the most common coflows: shuffle and broadcast. Incidentally, the
former is a clairvoyant coflow, where the communication matrix is known a priori, and the latter
is a non-clairvoyant coflow, where flows are dynamically added because of its BitTorrent-like im-
plementation. To the best of our knowledge, this is the first solution to exploit the all-or-nothing
property of communication conveyed through coflows.

The rest of this chapter is organized as follows. The next section discusses the importance
of communication in distributed data-parallel applications and the state-of-the-art in addressing
relevant challenges. Section 4.2 provides an outline of our approach using coflows as building
blocks. Section 4.3 presents two real-world examples to quantitatively illustrate the importance
of communication in big data workloads. Section 4.4 presents our broadcast scheme, Cornet, and
Section 4.5 presents the optimal shuffle scheduling algorithm, MADD. We then evaluate the pro-
posed algorithms in Section 4.6, survey related work in Section 4.7, and summarize our findings
in Section 4.8.

4.1 Background
The past decade has seen a rapid growth of distributed data-parallel applications to analyze and
make sense of growing volumes of data collected and generated by user activities on web services
such as Google, Facebook, and Yahoo!. With the advent of cloud computing, even small startups
are dealing with very large datasets using distributed data-parallel applications. As discussed in
Chapter 2, these frameworks (e.g., MapReduce [77], Dryad [119], and Spark [208]) typically im-
plement a data flow computation model, where datasets pass through a sequence of processing
stages.

CHAPTER 4. INTRA-COFLOW SCHEDULING 27

Many of the jobs executed using these frameworks manipulate massive amounts of data and
run on clusters consisting of as many as tens of thousands of machines. Due to the very high
cost of these clusters, operators aim to maximize the cluster utilization, while accommodating a
variety of applications, workloads, and user requirements. To achieve these goals, many solutions
have been proposed to reduce job completion times [40, 120, 207, 210], accommodate interactive
workloads [120,164,207], and increase utilization [78,79,117,195]. While in large part successful,
these solutions primarily focus on scheduling and managing computation and storage resources,
while mostly ignoring the network.

However, managing and optimizing network activity is critical for improving job performance.
Indeed, Hadoop traces from Facebook show that, on average, transferring data between successive
stages accounts for 25% of the running times of jobs with reduce stages (see Appendix A for more
details). Section 4.3 presents two real-world machine learning applications – a spam classifica-
tion algorithm and a collaborative filtering job – illustrating even bigger impacts because of their
iterative nature.

Despite the impact of communication, until recently, researchers and practitioners have largely
overlooked application-level requirements when improving network-level metrics such as flow-
level fairness and flow completion time (FCT). Existing approaches toward improving communi-
cation performance can be categorized into two broad classes: (i) increasing datacenter bandwidth
and (ii) decreasing flow completion times. However, proposals for full bisection bandwidth net-
works [106, 108, 110, 158] along with flow-level scheduling [33, 37, 45, 51, 118, 200] can only
improve network-level performance, but they do not account for collective behaviors of flows due
to the lack of job-level semantics. Worse, this mismatch often hurts application-level performance,
even when network-oriented metrics such as FCT or fairness improve (§3.2).

The coflow abstraction bridges this gap by exposing application-level semantics to the network.
It builds upon the all-or-nothing property observed in many aspects of data-parallel computing
such as task scheduling [40, 210] and distributed cache allocation [39]; for the network, it means
all flows must complete for the completion of a communication stage. In this chapter, we exploit
coflow-level knowledge to improve the performance of two common communication patterns –
shuffle and broadcast – that occur in virtually all distributed data-parallel applications and are
responsible for a bulk of the network traffic in these clusters (see Appendix A for a breakdown of
contributions the major traffic sources). Shuffle captures the many-to-many communication pattern
between the map and reduce stages in MapReduce, and between Dryad’s stages. Broadcast captures
the one-to-many communication pattern employed by iterative optimization algorithms [215] as
well as fragment-replicate joins in Hadoop [13].

4.2 Solution Outline
Our solutions for broadcast and shuffle are rooted in the all-or-nothing property of these coflows,
and we rely on centralized coordination to exploit this property. For broadcasts, we propose an
algorithm that implements a BitTorrent-like protocol optimized for datacenters. We refer to this as
Cornet and augment it using an adaptive clustering algorithm to take advantage of the hierarchical

CHAPTER 4. INTRA-COFLOW SCHEDULING 28

network topology in many datacenters. The key difference between Cornet and traditional BitTor-
rent, however, is that whenever a participant is slow, Cornet attempts to accelerate its completion
instead of throttling it – the slowest one is the one that matters the most. For shuffles, we propose
an optimal algorithm called Minimum Allocation for Desired Duration (MADD) that explicitly
sets data-proportional rates, ensuring that all the flows finish together with the slowest flow.

The proposed solutions can be implemented at the application layer and overlaid on top of
diverse routing topologies [33, 106, 110, 158], access control schemes [56, 107], and virtualiza-
tion layers [169, 171, 184]. We believe that this implementation approach is both appropriate and
attractive for two primary reasons. First, algorithms are easier to implement into the central mas-
ters of the high-level programming frameworks (e.g., MapReduce). Second, it allows for faster
deployment without modifying routers and switches, and even in the public cloud.

We built prototype implementations of the proposed algorithms in Apache Spark [208] and
conducted experiments on DETERlab and Amazon EC2. Our experiments show that Cornet is up
to 4.5× faster than the default Hadoop implementation, while MADD can speed up shuffles by
29%. Moreover, they reduced communication times by up to 3.6× and job completion times by up
to 1.9× for the aforementioned machine learning applications.

4.3 Motivating Applications
To motivate the importance of communication, in this section, we study two applications imple-
mented using Spark that involve broadcast and shuffle coflows: a logistic regression implementa-
tion for identifying spam on Twitter [189] and a collaborative filtering algorithm for the Netflix
Challenge [215].

4.3.1 Logistic Regression
As an example of an iterative MapReduce application in Spark, we consider Monarch [189], a
system for identifying spam links on Twitter. The application processed 55 GB of data collected
about 345, 000 tweets containing links. For each tweet, the group collected 1000-2000 features
relating to the page linked to (e.g., domain name, IP address, and frequencies of words on the
page). The dataset contained 20 million distinct features in total. The application identifies which
features correlate with links to spam using logistic regression [116].

We depict the per-iteration workflow of this application in Figure 4.1a. Each iteration includes
a large broadcast (300 MB) and a shuffle (190 MB per reducer) operation; it typically takes the
application at least 100 iterations to converge. Each coflow acts as a barrier: the job is held up
by the slowest machine to complete. In our initial implementation of Spark, which used the same
broadcast and shuffle strategies as Hadoop, we found that communication accounted for 42% of
the iteration time, with 30% spent in broadcast and 12% spent in shuffle on a 30-machine cluster.
With such a large fraction of the running time spent on communication, optimizing the completion
times of these coflows is critical.

CHAPTER 4. INTRA-COFLOW SCHEDULING 29

x x compute gradients

broadcast
param

shuffle
gradients

collect new
param

x x sum & regularize

(a) Logistic Regression

x x

broadcast
movie vectors

collect
updates

x x update movie vectors

broadcast
user vectors

collect
updates

update user vectors

(b) Collaborative Filtering

Figure 4.1: Per-iteration workflow diagrams for our motivating machine learning applications. The
circle represents the master machine and the boxes represent the set of worker machines.

0

50

100

150

200

250

10 30 60 90

Ti
m

e
(s

)

Number of Machines

Shuffle
Computation

Figure 4.2: [EC2] Communication and computation times per iteration when scaling the collabo-
rative filtering job using HDFS-based broadcast.

4.3.2 Collaborative Filtering
As a second example of an iterative algorithm, we discuss a collaborative filtering job used for
the Netflix Challenge data. The goal is to predict users’ ratings for movies they have not seen
based on their ratings for other movies. The job uses an algorithm called alternating least squares
(ALS) [215]. ALS models each user and each movie as having K features, such that a user’s rating
for a movie is the dot product of the user’s feature vector and the movie’s. It seeks to find these
vectors through an iterative process.

CHAPTER 4. INTRA-COFLOW SCHEDULING 30

Figure 4.1b shows the workflow of ALS. The algorithm alternately broadcasts the current user
or movie feature vectors, to allow the machines to optimize the other set of vectors in parallel. Each
broadcast is roughly 385 MB. These broadcasts limited the scalability of the job in our initial im-
plementation of broadcast, which was through shared files in the Hadoop Distributed File System
(HDFS) – the same strategy used in Hadoop. For example, Figure 4.2 plots the iteration times for
the same problem size on various numbers of machines. Computation time goes down linearly with
the number of machines, but communication time grows linearly. At 60 machines, the broadcasts
cost 45% of the iteration time. Furthermore, the job stopped scaling past 60 machines, because the
extra communication cost from adding machines outweighed the reduction in computation time
(as can be seen at 90 machines).

4.4 The Broadcast Coflow
Data-intensive applications often need to send large pieces of data to multiple machines. For exam-
ple, in the collaborative filtering algorithm in Section 4.3, broadcasting an O(100 MB) parameter
vector quickly became a scaling bottleneck. In addition, distributing files to perform a fragment-
replicate join1 in Hadoop [13], rolling out software updates [21], and deploying VM images [19]
are some other use cases where the same data must be sent to a large number of machines.

In this section, we discuss current mechanisms for implementing broadcast in datacenters and
identify several of their limitations (§4.4.1). We then present Cornet, a BitTorrent-like protocol
designed specifically for datacenters that can outperform the default Hadoop implementation by
4.5× (§4.4.2). Lastly, we present a topology-aware variant of Cornet that leverages global control
to further improve performance by up to 2× (§4.4.3).

4.4.1 Existing Solutions
One of the most common broadcast solutions in existing data-intensive applications involves writ-
ing the data to a shared file system (e.g., HDFS [6], NFS) and reading it later from that centralized
storage. In Hadoop, both Pig’s fragment-replicate join implementation [13] and the Distributed-
Cache API for deploying code and data files with a job use this solution. This is likely done out
of a lack of other readily available options. Unfortunately, as the number of receivers grows, the
centralized storage system can quickly become a bottleneck, as we observed in Section 4.3.

To eliminate the centralized bottleneck, some systems use d-ary distribution trees rooted at the
source machine. Data is divided into blocks that are passed along the tree. As soon as a machine
finishes receiving the complete data, it can become the root of a separate tree. d is sometimes set to
1 to form a chain instead of a tree (e.g., in LANTorrent [19] and in the protocol for writing blocks
in HDFS [6]). Unfortunately, tree and chain schemes suffer from two limitations. First, in a tree
with d > 1, the sending capacity of the leaf machines (which are at least half the machines) is not
utilized. Second, a slow machine or link will slow down its entire subtree, which is problematic at
large scales due to the prevalence of stragglers [77].

1This is a join between a small table and a large table where the small table is broadcasted to all the map tasks.

CHAPTER 4. INTRA-COFLOW SCHEDULING 31

Unstructured data distribution mechanisms such as BitTorrent [72], traditionally used in the
Internet, address these drawbacks by providing scalability, fault-tolerance, and high throughput in
heterogeneous and dynamic networks. Recognizing these qualities, Twitter has built Murder [21],
a wrapper over the BitTornado [10] implementation of BitTorrent, to deploy software to its servers.

4.4.2 Cornet: BitTorrent for Datacenters
Cornet is a BitTorrent-like protocol optimized for datacenters. In particular, Cornet takes advantage
of the cooperative nature of a cluster: i.e., high-speed and low-latency connections, the absence of
selfish peers, and the fact that there is no malicious data corruption. By leveraging these properties,
Cornet can outperform BitTorrent implementations for the Internet by up to 4.5×.

Cornet differs from BitTorrent in three main aspects:

• Unlike BitTorrent, which splits files into blocks and subdivides blocks into small chunks
with sizes of up to 256 KB, Cornet only splits data into large blocks (4 MB by default).

• While in BitTorrent some peers do not contribute to the broadcast and leave as soon as
they finish the download, in Cornet, each machine contributes its full capacity over the
full duration of the broadcast. Thus, Cornet does not include a tit-for-tat scheme or chok-
ing/unchoking mechanisms to incentivize machines [71].

• Cornet does not employ expensive SHA1 operations on each data block to ensure data in-
tegrity; instead, it performs a single integrity check over the whole data.

Cornet also employs a cap on the number of simultaneous connections to improve perfor-
mance.2 When a peer is sending to the maximum number of recipients, it puts further requests into
a queue until one of the sending slots becomes available. This ensures faster service times for the
small number of connected peers and allows them to finish quickly to join the session as the latest
sources for the blocks they just received.

During broadcast, receivers explicitly request for specific blocks from their counterparts. How-
ever, during the initial stage, the source of a Cornet broadcast sends out at least one copy of each
block in a round-robin fashion before duplicating any block.

Similar to a BitTorrent tracker, Cornet includes a controller that assigns a set of peers to each
machine. However, unlike BitTorrent, each machine requests new peers every second. This coor-
dination allows Cornet to adapt to network topologies and to optimize coflow completion times.

4.4.3 Topology-Aware Cornet
Many datacenters employ hierarchical network topologies with oversubscription ratios as high
as 10 [38, 48], where transfer times between two machines on the same rack are significantly
lower than between machines on different racks. To take network topology into account, we have
developed two extensions to Cornet.

2The default limits for the number of receive and send slots per machine are 8 and 12, respectively.

CHAPTER 4. INTRA-COFLOW SCHEDULING 32

CornetTopology In this case, we assume that the network topology is known in advance, which
is appropriate, for example, in private datacenters. In CornetTopology, we use the configuration
database that specifies locality groups, e.g., which rack each machine is in. When a receiver re-
quests for a new set of peers, instead of choosing among all possible recipients (as in vanilla
Cornet), we prioritize machines on the same rack as the receiver. Essentially, each rack forms its
individual swarm with minimal cross-rack communication. The results in Section 4.6.2 show that
CornetTopology can reduce broadcast time by 50%.

CornetClustering In cloud environments, users have no control over machine placements, and
cloud providers do not disclose any information regarding network topology. Even if the initial
placements were given out, VM migrations in the background could invalidate this information.
For these cases, we have developed CornetClustering that automatically infers and exploits the
underlying network topology.

It starts off without any topology information such as the vanilla Cornet. Throughout the course
of an application’s lifetime, as more and more broadcasts happen, it records block transfer times
between different pairs of receivers and uses a learning algorithm to infer the rack-level topology.
Once we infer the topology, we use the same mechanism as in CornetTopology. The controller
keeps recalculating the inference periodically to keep an updated view of the network.

The inference procedure consists of the following four steps.

I First, we record machine-to-machine block transfer times. We use this data to construct an
n× n distance matrix D, where n is the number of receiver machines and the entries are the
median block transfer times between a pair of machines.

II Next, we infer the missing entries in the distance matrix using a version of the nonnegative
matrix factorization procedure of Mao and Saul [148].

III After completing the matrix D, we project the machines onto a two-dimensional space using
non-metric multidimensional scaling [137].

IV Finally, we cluster using a mixture of spherical Gaussians with fixed variance σ2 and au-
tomatically select the number of partitions based on the Bayesian information criterion
score [93].

In operational use, one can set σ to the typical intra-rack block transfer time (in our experimental
setup, we use σ = 200 ms). With enough training data, the procedure usually infers the exact
topology and provides a similar speedup to CornetTopology, as we show in Section 4.6.2.

4.4.4 Size-Aware Broadcast Algorithm Selection
While Cornet achieves good performance for a variety of workloads and topologies, it does not
always provide the best performance. For example, in our experiments we found that for a small
number of receivers, a chain distribution topology usually performs better. In such a case, the

CHAPTER 4. INTRA-COFLOW SCHEDULING 33

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

r1 r2

… … s1

NN

s2N+1 sN+1

r1 r2

… … s1

NN

s2N+1 sN+1

(a) Logical view

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

(b) Physical view

Figure 4.3: A 3× 2 shuffle. (a) The two receivers (at the bottom) need to fetch separate pieces of
data, depicted as boxes of different colors, from each sender. (b) The same shuffle on 3 × 3 data-
center fabric with three ingress/egress ports. Flows in ingress ports are organized by destinations
and color-coded by receivers.

Cornet controller can decide whether to employ one algorithm or another based on the number of
receivers. In general, as new broadcast algorithms are developed, it can pick the best one to match
a particular data size and topology. This ability illustrates the advantage of coordination, which
enables the controller to make decisions based on global information.

4.5 The Shuffle Coflow
During the shuffle stage of a MapReduce job, each reducer is assigned a range of the key space
produced by the mappers and must fetch some elements from every mapper. Consequently, shuffle
coflows are some of the most common communication patterns in datacenters. Similar constructs
exist most data-intensive applications [6, 119, 146, 147, 208]. In general, a shuffle consists of R
receivers, r1, . . . , rR, and M senders, s1, . . . , sM , where the ith sender needs to send a distinct
dataset dij to the jth receiver. Figure 4.3 depicts a typical shuffle with R = 2 and M = 3.

Because each piece of data goes from only one sender to one receiver, unlike in broadcasts,
receivers cannot improve performance by sharing data. The main concern during a shuffle is, there-
fore, to keep bottleneck links fully utilized (§4.5.1). We find that the strategy used by systems such
as Hadoop, where each receiver opens connections to multiple random senders and rely on TCP
fair sharing among these flows, is close to optimal when data sizes are balanced (§4.5.2). There are
cases with unbalanced data sizes in which this strategy can perform 1.5× worse than optimal. Fi-
nally, we propose an optimal algorithm called Minimum Allocation for Desired Duration (MADD)
to address these scenarios (§4.5.3).

CHAPTER 4. INTRA-COFLOW SCHEDULING 34

r1 r2

s2 s3 s4 s1 s5

(a) Sender-side

r1 r2

s2 s3 s4 s1 s5

(b) Receiver-side

r1 r2

s2 s3 s4 s1 s5

(c) In-network

Figure 4.4: Different bottleneck locations dictating shuffle performance.

4.5.1 Bottlenecks and Optimality in Shuffle
Figure 4.4 shows three situations where a bottleneck limits shuffle performance and scheduling
can have little impact on the overall completion time. In Figure 4.4a, one of the senders has more
data to send than others (e.g., a map produced more output in a MapReduce job), so this machine’s
link to the network is the bottleneck. Even with the random scheduling scheme in current systems,
this link is likely to stay fully utilized throughout the transfer, and because a fixed amount of
data must flow along this link to finish the shuffle, the completion time of the shuffle will be the
same regardless of the scheduling of other flows. Figure 4.4b shows an analogous situation where a
receiver is the bottleneck. Finally, in Figure 4.4c, there is a bottleneck in the network – for example,
if the network is not non-blocking – and again the order of data fetches will not affect the overall
completion time as long as the contended links are kept fully utilized.

These examples suggest a simple optimality criterion for shuffle scheduling: an optimal shuffle
algorithm keeps the bottlenecks fully utilized throughout the transfer. This condition is clearly
necessary, because if there was a time period during which a shuffle schedule kept all ports less
than 100% utilized, the completion time could be lowered by slightly increasing the rate of all
flows during that period. The condition is also sufficient on a non-blocking fabric. In this case, the
shuffle must transfer

∑
j dij amount of data through each ingress port i (P in

i) and
∑

i dij through

each egress port j (Pout
j), where dij is the amount of data to transfer from P in

i to Pout
j at rate rij .

The minimum completion time (Γ) becomes

Γ = max
(

max
i

∑
j dij

Rem(P in
i)

,max
j

∑
i dij

Rem(Pout
j)

)
(4.1)

where Rem(.) denotes the remaining bandwidth of an ingress or egress port. If any port is fully
utilized throughout the shuffle duration, then this lower bound has been reached, and the schedule
is the optimal. The former argument of Equation (4.1) represents the minimum time to transfer∑

ij dij amount of data through the input ports, and the latter is for the output ports.

CHAPTER 4. INTRA-COFLOW SCHEDULING 35

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Fi
ni

sh
 T

im
e

(s
)

Number of Concurrent Connections per Reducer

30 Reducers

10 Reducers

1 Reducer

Figure 4.5: [EC2] Completion times for a shuffle with 30 senders and 1 to 30 receivers, as a
function of the number of concurrent flows (from random senders) per receiver.

4.5.2 Load Balancing in Current Implementations
The optimality observation indicates that the links of both senders and receivers should be kept as
highly utilized as possible. Indeed, if the amount of data per machine is balanced, which is often
the case in large MapReduce jobs simply because many tasks have run on every machine, then
all of the machines’ outgoing links can potentially become bottlenecks. The biggest risk with the
randomized data fetching scheme in current systems is that some senders get too few connections
to them, underutilizing their links.3 Our main finding is that having multiple connections per re-
ceiver drastically reduces this risk and yields near-optimal shuffle times. In particular, Hadoop’s
setting of 5 connections per receiver seems to work well, although more connections can improve
performance slightly.

We conducted an experiment with 30 senders and 1 to 30 receivers on Amazon EC2, using
extra large machines. Each receiver fetched 1 GB of data in total, balanced across the senders.
We varied the number of parallel connections opened by each receiver from 1 to 30. We plot the
average transfer times for five runs in Figure 4.5, with max/min error bars.

We note two trends in the data. First, using a single fetch connection per receiver leads to poor
performance, but transfer times improve quickly with even two connections. Second, with enough
concurrent connections, transfer times approach 8 seconds asymptotically, which is a lower bound
on the time we can expect for machines with 1 Gbps links. Indeed, with 30 connections per receiver,
the overall transfer rate per receiver was 790 Mbps for 30 receivers, 844 Mbps for 10 receivers,
and 866 Mbps for 1 receiver, while the best transfer rate we got between any two machines in
our cluster was 929 Mbps. This indicates that randomized selection of senders is within 15% of
optimal, and may be even closer because there may be other traffic on EC2 interfering with our
job, or a topology with less than full bisection bandwidth.

3Systems such as Hadoop cap the number of receiving connections per reduce task for pragmatic reasons, such as
limiting the number of threads in the application. Having fewer connections per receiver can also mitigate incast [194].

CHAPTER 4. INTRA-COFLOW SCHEDULING 36

1

2

3

1

2

3
DC Fabric

1
1

1
1

1
1

r1 r2

… … s1

NN

s2N+1 sN+1

NN

r1 r2

… … s1 s2N+1 sN+1

Figure 4.6: A shuffle configuration where MADD outperforms per-flow fairness. Senders s1 to sN
sends one data unit only to receiver r1, senders sN+1 to s2N sends one data unit only to receiver r2,
and sN+1 sends N data units to both the receivers.

The improvement in transfer times with more connections happens for two reasons. First, with
only one connection per receiver, collisions (when two receivers pick the same sender) can only
lower performance, because some senders will be idle. In contrast, with even 2 threads, a collision
that slows down some flows may speed up others (because some senders are now sending to only
one receiver). Second, with more connections per receiver, the standard deviation of the number of
flows to each sender decreases relative to its mean, reducing the effect of imbalances.

4.5.3 Minimum Allocation for Desired Duration (MADD)
We now consider how to optimally schedule a shuffle on a non-blocking network fabric, where the
jth receiver needs to fetch dij units of data from the ith sender. We aim to minimize the completion
time of the shuffle, i.e., the time when the last receiver finishes, under the assumption that data sizes
between each sender-receiver pairs are known a priori.

We propose a simple algorithm called Minimum Allocation for Desired Duration (MADD)
that allocates rates to each flow for all flows to finish on or before a specified time. To minimize a
shuffle’s completion time, we want all its flows to finish before its bottleneck, i.e., on or before Γ

time units. We can guarantee this by ensuring that the rates (rij) of each flow is at least
dij
Γ

.

Comparison to Coflow-Agnostic Schemes

The optimal schedule shown in Figure 3.2 (§ 3.2) shows MADD’s performance against per-flow
fairness and per-flow prioritization schemes.

The improvements from MADD is due to data skew – i.e., the discrepancies in amounts of data
each receiver has to receive from each sender. This discrepancy can be increased in certain shuffle
configurations. Figure 4.6 shows one such example; for N = 100, MADD finishes 1.495× faster

CHAPTER 4. INTRA-COFLOW SCHEDULING 37

than fair sharing. We found that MADD can outperform current TCP-based shuffle implementa-
tions by up to 1.5×.

Nevertheless, we found that configurations where MADD outperforms fair sharing are rare in
practice. If the amounts of data to be transferred between each sender and each reducer are roughly
balanced, i.e., in the absence of data skew, MADD reduces to fair sharing. In addition, if there is a
single bottleneck sender or bottleneck receiver, then fair sharing will generally keep that machine’s
link fully utilized, resulting in an optimal schedule.

Per-flow prioritization schemes are likely to be suboptimal in most cases for coflow-level per-
formance because they completely avoid flow-level sharing.

4.6 Evaluation
We have evaluated Cornet and MADD in the context of Spark and ran experiments in two en-
vironments: Amazon EC2 [3] and DETERlab [12]. On EC2, we used extra-large high-memory
instances, which appear to occupy whole physical machines and had enough memory to perform
the experiments without involving disk behavior (except for HDFS-based mechanisms). Although
topology information is not provided by EC2, our tests revealed that machines were able to achieve
929 Mbps in each direction and 790 Mbps during 30 machines all-to-all communication (Fig-
ure 4.5), suggesting a near-full bisection bandwidth network. The DETERlab cluster spanned 3
racks and was used as ground-truth to verify the correctness of Cornet’s clustering algorithm.

Our experiments show the following:

• Cornet performs 4.5× better than the default Hadoop implementation and BitTornado
(§4.6.1), and with topology awareness, Cornet can provide further 2× improvement (§4.6.2).

• MADD can improve shuffle speeds by 29% (§4.6.3).

• Taken together, Cornet and MADD reduced communication times in the logistic regression
and collaborative filtering applications in Section 4.3 by up to 3.6× and sped up jobs by up
to 1.9× (§4.6.4).

Since coflows act as synchronization steps in many iterative and data-intensive frameworks,
capturing the behavior of the slowest receiver is the most important metric for comparing alterna-
tives. We, therefore, use the completion time of the entire coflow as our main performance metric.

4.6.1 Comparison of Broadcast Mechanisms
Figure 4.7 shows the average completion times of different broadcast mechanisms (Table 4.1) to
transfer 100 MB and 1 GB of data to multiple receivers from a single source. Error bars represent
the minimum and the maximum observed values across five runs.

We see that the overheads of choking/unchoking, aggressive hashing, and allowing receivers
to leave as soon as they are done, fail to take full advantage of the faster network in a datacenter

CHAPTER 4. INTRA-COFLOW SCHEDULING 38

Algorithm Description
HDFS (R=3) Sender creates 3 replicas of the input in HDFS and receivers read

from them
HDFS (R=10) Same as before, but there are 10 replicas
Chain A chain of receivers rooted at the sender
Tree (D=2) Binary tree with sender as the root
BitTornado BitTorrent implementation for the Internet
Cornet Approach proposed in Section 4.4
Theoretical
Lower Bound

Minimum broadcast time in the EC2 network (measured to have
1.5 Gbps pairwise bidirectional bandwidth) using pipelined bino-
mial tree distribution mechanism [94]

Table 4.1: Broadcast mechanisms compared.

0

10

20

0 20 40 60 80 100

Ti
m

e
(s

)

Number of Receivers

HDFS (R=3)
HDFS (R=10)
Chain
Tree (D=2)
BitTornado
Cornet
Lower Bound

0

2

4

0 20 40 60 80 100

Ti
m

e
(s

)

Number of Receivers

HDFS (R=3)
HDFS (R=10)
Chain
Tree (D=2)
BitTornado
Cornet
Lower Bound

(a) 100 MB

0

20

40

60

80

0 20 40 60 80 100

Ti
m

e
(s

)

Number of Receivers

HDFS (R=3)
HDFS (R=10)
Chain
Tree (D=2)
BitTornado
Cornet
Lower Bound

0

20

40

60

0 20 40 60 80 100

Ti
m

e
(s

)

Number of Receivers

HDFS (R=3)
HDFS (R=10)
Chain
Tree (D=2)
BitTornado
Cornet
Lower Bound

(b) 1 GB

Figure 4.7: [EC2] Completion times of different broadcast mechanisms for varying data sizes.

environment and made BitTornado4 as much as 4.5× slower than the streamlined Cornet imple-
mentation.

4We used Murder [21] with a modification that forced every peer to stay in the swarm until all of them had finished.

CHAPTER 4. INTRA-COFLOW SCHEDULING 39

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Fr
ac

tio
n

of
 C

om
pl

et
ed

 R
ec

ei
ve

rs

Time (s)

Cornet
Chain
Tree (D=2)
BitTornado
HDFS (R=10)
HDFS (R=3)

Figure 4.8: [EC2] CDF of completion times of individual receivers while transferring 1 GB to 100
receivers using different broadcast mechanisms. Legend names are ordered by the topmost points
of each line, i.e., when all the receivers completed receiving.

Cornet scaled well up to 100 receivers for a wide range of data sizes in our experiments. For
example, Cornet took as low as 15.4 seconds to complete broadcasting 1 GB data to 100 receivers
and remained within 33% of the theoretical lower bound. If there were too few participants or the
amount of data was small, Cornet could not fully utilize the available bandwidth. However, as the
number of receivers increased, Cornet completion times increased in a much slower manner than
its alternatives, which convinces us that Cornet can scale well beyond 100 receivers.

We found structured mechanisms to work well only for smaller scale. Any delay introduced
by a straggling internal machine of a tree or a chain propagated and got magnified throughout the
structure. Indeed, upon inspection, we found that the non-monotonicity of chain and tree comple-
tion times were due to this very reason in some experimental runs (e.g., completion time for 25
receivers using a tree structure is larger than that for 50 receivers in 4.7b).

As expected, HDFS-based mechanisms performed well only for small amounts of data. While
increasing the number of replicas helps, there is a trade-off between time spent in creating replicas
vs. time all the receivers would spend in reading from those replicas. In our experiments, HDFS
with 3 replicas performed better than HDFS with 10 replicas when the total number of receivers
was less than 50. Overall, HDFS with 3 and 10 replicas were up to 5× and 4.5× slower than
Cornet, respectively.

A Closer Look at Per-machine Completion Times. We present the CDFs of completion times
of individual receivers for each of the compared broadcast mechanisms in Figure 4.8.

Notice that almost all the receivers in Cornet finished simultaneously. The slight bends at the
two endpoints illustrate the receivers (<10%) that finished earlier or slower than the average re-
ceiver. Cornet tries to minimize such deviations (at most three seconds in this case) by forcing all
the completed receivers to stay in the system. The CDF representing BitTornado reception times

CHAPTER 4. INTRA-COFLOW SCHEDULING 40

0

10

20

0 20 40 60 80 100

Ti
m

e
(s

)

Number of Receivers

HDFS (R=3)
HDFS (R=10)
Chain
Tree (D=2)
BitTornado
Cornet
Lower Bound

0

2

4

0 20 40 60 80 100

Ti
m

e
(s

)

Number of Receivers

HDFS (R=3)
HDFS (R=10)
Chain
Tree (D=2)
BitTornado
Cornet
Lower Bound

Figure 4.9: [EC2] Broadcast completion times for 10 MB data.

is similar to that of Cornet except that the variation in individual completion times is significantly
higher and the average receiver is almost 4× slower.

Next, the steps in the CDFs of chain and tree highlight how stragglers slow down all their
children in the distribution structure. Each horizontal segment indicates a machine that was slow
in finishing reception and the subsequent vertical segment indicates the receivers that experienced
head-of-line blocking due to a slow ancestor.

Finally, receivers in HDFS-based transfer mechanism with 10 replicas start finishing slower
than those with 3 replicas due to higher replication overhead. However, in the long run, receivers
using 10 replicas finish faster because of less reading contention.

The Case for Coordination As evident from Figure 4.7, broadcast mechanisms have specific
operating regimes. In particular, chain- and tree-based approaches are faster than Cornet for small
numbers of machines and small data sizes, likely because the block sizes and polling intervals in
Cornet prevent it from utilizing all the machines’ bandwidth right away. We confirmed this by run-
ning another set of experiments with 10 MB (Figure 4.9), where tree and chain outperformed other
approaches in many cases. The Cornet controller can pick the best transfer mechanism for a given
data size and number of machines using its global knowledge. The advantages of coordination
becomes more apparent later when we evaluate Cornet using adaptive clustering algorithms.

Impact of Block Size

For a given data size, too large a block size limits sharing between peers. However, if block size is
too small, overheads increase. Figure 4.10a presents the impact of block size on Cornet completion
times for different data sizes. When the amount of data is too small, there is no significant change
in completion times for varying block sizes because completion times are dominated by Cornet’s
overheads. However, broadcast completion times vary noticeably as the amount of data increases.
In addition, the minimum completion time for a particular data size occur at different block sizes
(e.g., 1 MB block size for 100 MB data and 4 MB for 1 GB). For a given amount of data, however,
minimum completion times for different numbers of receivers can be found at the same block size

CHAPTER 4. INTRA-COFLOW SCHEDULING 41

0

25

50

75

100

256KB 512KB 1MB 2MB 4MB 8MB
Ti

m
e

(s
)

Block Size

100 Receivers
50 Receivers
25 Receivers

0

10

20

30

40

50

512KB 1MB 2MB 4MB 8MB 16MB 32MB

Ti
m

e
(s

)

Block Size

1GB
100MB
10MB

(a) Different amounts of data to 100 receivers

0

25

50

75

100

256KB 512KB 1MB 2MB 4MB 8MB

Ti
m

e
(s

)

Block Size

100 Receivers
50 Receivers
25 Receivers

0

10

20

30

40

50

512KB 1MB 2MB 4MB 8MB 16MB 32MB

Ti
m

e
(s

)

Block Size

1GB
100MB
10MB

(b) 1 GB data to different numbers of receivers

Figure 4.10: [EC2] Cornet completion times for varying block sizes.

0

10

20

30

Cornet CornetTopology CornetClustering

Ti
m
e(
s)

(a) 100 MB

0

10

20

30

Cornet CornetTopology CornetClustering

Ti
m

e
(s

)

(b) 200 MB

Figure 4.11: [DETERlab] Cornet completion times when the rack topology is unknown, given,
and inferred using clustering.

(Figure 4.10b). While these experiments do not give the extent of dependency (or independence)
of data size or the number of receivers with block size, they do strengthen our intuition that block
size does affect broadcast completion times significantly and require dynamic treatment primarily
with respect to the amount of data to be broadcasted.

4.6.2 Topology-Aware Cornet
In this section, we explore an extension of Cornet that exploits network topology information. We
hypothesized that if there is a significant difference between block transfer times within a rack vs.
between racks, then a topology-aware version of Cornet, which reduces cross-rack communication,
will experience improved transfer times. To answer this question, we conducted an experiment on
a 31 machine DETERlab testbed (1 controller and 30 receivers). The testbed topology was as
follows: Rack A was connected to Rack B and Rack B to Rack C. Each rack had 10 receiver
machines. The controller was in Rack B.

We ran the experiment with three configurations. The first was the default topology-oblivious
Cornet that allowed any receiver to randomly contact any other receiver. The second was Cor-
netTopology, where the controller partitioned the receivers according to Racks A, B, and C, and

CHAPTER 4. INTRA-COFLOW SCHEDULING 42

−2000 −500 500 1500

−
15

00
0

10
00

1st projected coord.

2n
d

pr
oj

ec
te

d
co

or
d.

●
●

●

●

●

●
●

●●

●

(a) DETERlab

−300 −100 100 300−
30

0
−

10
0

10
0

30
0

1st projected coord.

2n
d

pr
oj

ec
te

d
co

or
d.

(b) Amazon EC2

Figure 4.12: Two-dimensional, non-metric projection of receiver machines based on a distance
matrix of machine-to-machine block transfer times. The triangles, squares, and circles in (a) rep-
resent racks A, B, and C respectively in the DETERlab testbed.

disallowed communication across partitions. The last one was CornetClustering, where the con-
troller dynamically inferred the partitioning of the machines based on the machine-to-machine
block transfer times from 10 previous training runs.

The results in Figure 4.11 show the average completion times to transfer 100 MB and 200 MB
of data to all 30 receivers over 10 runs with min-max error bars. Given the topology information
(CornetTopology), completion times decreased by 50% compared to vanilla Cornet for the 200
MB broadcast. In 9 out of 10 runs for the 200 MB broadcast, CornetTopology inferred the exact
topology (see Figure 4.12a for a typical partitioning). Only in one run did it infer 5 partitions
(splitting two of the racks in half), though this only resulted in a 2.5 second slowdown compared
to inferring the exact topology. With the ten runs averaged together, CornetClustering’s reduction
in completion time was 47%.

We also evaluated Cornet and CornetClustering on a 30 machine EC2 cluster. Evaluating Cor-
netTopology was not possible because we could not obtain the ground-truth topology for EC2.
The performance of Cornet using inferred topology did not improve over Cornet on EC2 – the
algorithm found one cluster, likely due to EC2’s high bisection bandwidth (Section 4.5.2). The
projection in Figure 4.12b shows that with the exception of a few outliers (due to congestion),
all the machines appeared to be relatively close to one another and could not be partitioned into
well-separated groups.

Overall, the results on the DETERlab demonstrate that when there is a sizable gap between
intra-rack and inter-rack transfer times, knowing the actual machine topology or inferring it can
significantly improve broadcast times.

CHAPTER 4. INTRA-COFLOW SCHEDULING 43

A:

B:

C:

1 1 2 2 1 1

1 1 1 3 1113

1 1 1 1 4 1114 1

Figure 4.13: Shuffle configurations used in MADD evaluation. The arrows show the number of
units of data sent from each mapper to each reducer.

Topology Standard Shuffle MADD Speedup Theoretical Speedup
A 83.3 (1.1) 70.6 (1.8) 18% 25%
B 131 (1.8) 105 (0.5) 24% 33%
C 183 (2.6) 142 (0.7) 29% 38%

Table 4.2: [EC2] Completion times in seconds for MADD compared to a standard shuffle imple-
mentation for the shuffles in Figure 4.13. Standard deviations are in parentheses.

4.6.3 Minimum Allocation for Desired Duration (MADD)
In this experiment, we evaluate the optimal Minimum Allocation for Desired Duration (MADD)
algorithm discussed in Section 4.5.3 using three topologies on Amazon EC2. Figure 4.13 illus-
trates these topologies, with arrows showing the number of units of data sent between each pair of
machines (one unit corresponded to 2 GB in our tests). All of them are different variations of the
shuffle configuration in Figure 4.6.

We ran each scenario under both a standard implementation of shuffle (where each reducer
simultaneously connects to at most 5 mappers) and under MADD. We implemented MADD by
setting rates proportional to the amount of data each receiver had to fetch through coordinated,
application-layer rate limiting on top of underlying TCP.

We present average results from five runs, as well as standard deviations, in Table 4.2. In
all cases, MADD performs better than a standard implementation of shuffle, by 18%, 24%, and
29% for configurations A, B and C, respectively. In addition, we present the theoretical speedup
predicted for each topology, which would be achieved in a full bisection bandwidth network with
a perfect implementation of fair sharing between flows. The measured results are similar to those

CHAPTER 4. INTRA-COFLOW SCHEDULING 44

0 20 40 60 80 100 120

Before

After

Time (s)

Computation
Shuffle
Broadcast

Figure 4.14: [EC2] Per-iteration completion times for the logistic regression application before
and after using Cornet and MADD.

0

50

100

150

200

250

10 30 60 90

Ti
m

e
(s

)

Number of Machines

Shuffle
Computation

(a) Before

0

50

100

150

200

250

10 30 60 90

Ti
m

e
(s

)

Number of Machines

Shuffle
Computation

(b) After

Figure 4.15: [EC2] Per-iteration completion times when scaling the collaborative filtering appli-
cation using MADD.

predicted but somewhat lower because fair sharing between TCP flows is not perfect (e.g., if a
machine starts 2 GB transfers to several machines at the same time, these transfers can finish 10-15
seconds apart).

4.6.4 End-to-End Results on Full Applications
We revisit the motivating applications from Section 4.3 to examine the improvements in end-to-
end run times after adopting the new broadcast and shuffling algorithms. In particular, “before”
entails running with a HDFS-based broadcast implementation (with the default 3× replication)
and a shuffle with 5 threads per receiver (the default in Hadoop). Meanwhile, “after” entails both
Cornet and MADD.

Figure 4.14 illustrates the breakdown of time spent in different activities in each iteration of
Monarch in a 30 machine EC2 cluster. We see that its communication overhead in each iteration
decreased from 42% of the run time to 28%, and iterations finished 22% faster overall. There is a

CHAPTER 4. INTRA-COFLOW SCHEDULING 45

2.3× speedup in broadcast and a 1.23× speedup in shuffle. The improvements for both broadcast
and shuffle are in line with the findings in Sections 4.6.1 and 4.5.2.

Figure 4.15b presents the per-iteration completion times for the collaborative filtering job while
scaling it up to 90 machines using Cornet. Unlike the HDFS-based solution (Figure 4.15a), broad-
cast time increased from 13.4 to only 15.3 seconds using Cornet. As a result, the job could be
scaled up to 90 machines with 1.9× improvement in iteration times. The average time spent in
broadcast decreased by 3.6×, from 55.8 to 15.3 seconds, for 90 machines. These results are in line
with Section 4.6.1 given 385 MB broadcast per iteration.

4.7 Related Work
Centralized Network Controllers Centralized controllers for routing, access control, and load
balancing in the network had been proposed by the 4D architecture [107] and projects such as
Tesseract [204], Ethane [56], PLayer [126], Hedera [33], and FastPass [167]. While PLayer and
Ethane focus on access control, our primary objective is application-level performance improve-
ment. The scope of our work is limited to shared clusters and datacenters, whereas 4D, Tesseract,
and Ethane are designed for wide-area and enterprise networks. However, unlike Hedera, Fastpass,
or other proposals for centralized control planes, we work at the granularity of coflows to optimize
overall application performance, and not at the packet or flow level.

Scheduling and Management in Data-intensive Applications A plethora of schemes exist to
schedule and manage tasks of data-intensive applications. Examples include fair schedulers for
Hadoop [207] and Dryad [120], and Mantri [40] for outlier detection. The core tenet of existing
work in this area is achieving data locality to avoid network transfers as much as possible. Mesos
[117] and YARN [195] provide thin management layers to allow diverse applications to efficiently
share computation and storage resources, but leaves sharing of network resources to underlying
transport mechanisms. The proposed mechanisms complement these systems.

One-to-Many Data Transfer Mechanisms Broadcast, multicast, and diverse group communi-
cation mechanisms in application and lower layers of the network stack have been studied ex-
tensively in the literature. Diot et al. provide a comprehensive survey and taxonomy of relevant
protocols and mechanisms of distributed multi-point communication in [81]. Cornet is designed
for transferring large amounts of data in high-speed datacenter networks.

SplitStream [57] improves network utilization and tackles the bottleneck problem observed in
d-ary trees by creating multiple distribution trees with disjoint leave sets. However, it is designed
primarily for multimedia streaming over the Internet, where frames can be dropped. Maintaining
its structural constraints in presence of failure is complicated as well.

BitTorrent [72] is wildly popular for file-sharing. BitTorrent and similar peer-to-peer mech-
anisms are in use to distribute planet-scale software updates [99]. However, Murder [21] is one
of the few BitTorrent deployments inside a datacenter. Antfarm [168] uses a central coordinator

CHAPTER 4. INTRA-COFLOW SCHEDULING 46

across multiple swarms to optimize content distribution over the Internet. Cornet is a BitTorrent-
like system that is optimized for datacenters and uses adaptive clustering algorithm in the controller
to infer and take advantage of network topologies.

Incast or Many-to-One Transfers TCP incast collapse is typically observed in barrier-
synchronized request workloads where a receiver synchronously receives small amounts of data
from a large number of senders [194]. However, incast collapse has been reported in MapReduce-
like data-intensive workloads as well [62]. The latter case boils down to a special case of shuffle
with only one reducer. With MADD, we can effectively limit how many senders are simultaneously
sending and at what rate to alleviate this problem for data-intensive workloads.

Inferring Topology from Machine-to-Machine Latencies Inferring network topology in Cor-
netClustering (Section 4.4.3) is similar in spirit to inferring network coordinates [84]. These meth-
ods could act as a substitute for the non-metric multidimensional scaling step in the CornetClus-
tering procedure.

4.8 Summary
In this chapter, we focused on two common coflows, broadcasts and shuffles, and leveraged the
all-or-nothing property of coflows to develop efficient algorithms. For broadcasts, we proposed a
topology-aware BitTorrent-like scheme called Cornet that outperforms the status quo in Hadoop
by 4.5×. For shuffles, we proposed the optimal algorithm called Minimum Allocation for Desired
Duration (MADD). Overall, our schemes can increase application performance by up to 1.9×. Both
Cornet and MADD can be implemented at the application layer using centralized coordination and
does not require hardware changes to run in current datacenters and in the cloud.

Both of these algorithms are currently used in practice by several open-source systems. Most
notably, Cornet was merged with Apache Spark [208] as the default broadcast mechanism in Spark
release 1.1.0 and Varys [68] – described in more details in the next chapter – uses MADD as a
building block.

47

Chapter 5

Clairvoyant Inter-Coflow Scheduling

In the previous chapter, we demonstrated the application of coflows to improve the communication
performance of individual applications. In this chapter, we focus on improving communication per-
formance of multiple coexisting applications using clairvoyant inter-coflow scheduling. We address
inter-coflow scheduling for two different objectives: decreasing communication time of distributed
data-parallel jobs and guaranteeing predictable communication time. In the process, we introduce
the concurrent open shop scheduling with coupled resources problem, analyze its complexity, and
propose effective heuristics to optimize either objective.

The rest of this chapter is organized as follows. The next section covers the state-of-the-art in
optimizing communication performance of coexisting distributed data-parallel applications. Sec-
tion 5.2 outlines the proposed approach, which is implemented in a system called Varys. Sec-
tion 5.3 illustrates the possible benefits from inter-coflow scheduling over existing coflow-agnostic
schemes. Section 5.4, Section 5.5, and Section 5.6, respectively, present a system-level overview
of Varys, an analysis of the algorithms and heuristics used in Varys, and corresponding imple-
mentation details. We then evaluate Varys’s performance in Section 5.7 through deployments and
simulations. Next, we discuss in Section 5.8 its current limitations and future research directions,
survey related work in Section 5.9, and summarize our findings in Section 5.10.

5.1 Background
Despite the differences among data-intensive frameworks [6, 8, 77, 119, 147, 191, 208], their com-
munication is structured and takes place between groups of machines in successive computation
stages [65]. Often a communication stage cannot finish until all its flows have completed [67, 82].
The coflow abstraction represents such collections of parallel flows to convey job-specific com-
munication requirements – for example, minimizing completion time or meeting a deadline – to
the network and enables application-aware network scheduling. Indeed, as shown in Chapter 4,
optimizing a coflow’s completion time (CCT) decreases the completion time of corresponding job.

However, jobs from one or more frameworks create multiple coflows in a shared cluster. Anal-
ysis of production traces shows wide variations in coflow characteristics in terms of total size,

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 48

the number of parallel flows, and the size of individual flows (see §A.3 for more details). Simple
scheduling mechanisms such as FIFO and its variants [67, 82], which are attractive for the ease of
decentralization, do not perform well in such an environment – one large coflow can slow down
many smaller ones or result in many missed deadlines.

Simply applying a shortest- or smallest-first heuristic, the predominant way to solve most
scheduling problems, is not sufficient either. Inter-coflow scheduling is different from schedul-
ing individual flows [37, 118], because each coflow involves multiple parallel flows. It also differs
from related problems such as scheduling parallel tasks [40, 207] or caching parallel blocks [39];
unlike CPU or memory, the network involves coupled resources – each flow’s progress depends on
its rates at both source and destination. We show that these coupled constraints make permutation
schedules – scheduling coflows one after another without interleaving their flows – suboptimal.
Hence, centralized scheduling becomes impractical, because the scheduler needs to preempt flows
or recalculate their rates at arbitrary points in time even when no new flows start or complete.

In this chapter, we show how to perform inter-coflow scheduling for arbitrary coflows to either
to improve application-level performance by minimizing CCTs or to guarantee predictable com-
pletions within coflow deadlines. We prove this problem to be strongly NP-hard for either objective
and focus on developing pragmatic heuristics. Furthermore, we show how make centralized coflow
scheduling practical by rescheduling only on coflow arrivals and completions.

5.2 Solution Outline
Our key observation is the following: in the presence of coupled constraints, the bottleneck end-
points of a coflow determine its completion time. We propose the Smallest Effective Bottleneck
First (SEBF) heuristic that greedily schedules a coflow based on its bottleneck’s completion time.
We then use the MADD algorithm introduced in Chapter 4 to allocate rates to the individual flows
of each coflow. Because MADD slows down all the flows in a coflow to match the completion time
of the flow that will take the longest to finish, other coexisting coflows can make progress and the
average CCT decreases. While the combination of SEBF and MADD is not necessarily optimal,
we have found it to work well in practice.

For guaranteed coflow completions, we use admission control; i.e., we do not admit any coflow
that cannot meet its deadline without violating someone else’s. Once admitted, we use MADD to
complete all the flows of a coflow exactly at the coflow deadline for guaranteed completion using
the minimum amount of bandwidth.

Online coflow scheduling introduces two additional challenges. First, one must allow coflow
preemption to avoid head-of-line-blocking when minimizing CCTs, but preemption can cause star-
vation of some coflows. We avoid starvation by ensuring that all coflows receive non-zero band-
width over fixed intervals. Note that there is no starvation in the deadline-sensitive scenario, be-
cause admitted coflows are scheduled in their arrival order. Second, letting resources idle can lead
to increased CCTs or higher rejections depending on future coflows. To achieve work conservation
we introduce a backfilling procedure on top of MADD.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 49

The problem of minimizing the average CCT is, in fact, a generalization of the well-studied
problem of minimizing the average flow completion time (FCT) for multiple flows. Likewise,
the proposed two-step solution generalizes the shortest-remaining-time-first (SRTF) scheduling
policy [37, 118].

We have implemented the proposed algorithms in a system called Varys1, which provides a
simple API that allows data-parallel frameworks to express their communication requirements as
coflows with minimal changes to the framework. User-written jobs can take advantage of coflows
without any modifications.

We deployed Varys on a 100-machine EC2 cluster and evaluated it by replaying production
traces from Facebook. Varys improved CCTs both on average (up to 3.16×) and at high percentiles
(3.84× at the 95th percentile) in comparison to per-flow fair sharing. Hence, end-to-end comple-
tion times of jobs, especially the communication-heavy ones, decreased. The aggregate network
utilization remained the same, and there was no starvation. In trace-driven simulations, we found
Varys to be 2.16× better than fair sharing, 3.26× better than per-flow prioritization, and 3.33×
better than FIFO schedulers. Moreover, in EC2 experiments (simulations), Varys allowed up to 2×
(1.44×) more coflows to meet their deadlines in comparison to per-flow schemes.

5.3 Potential Benefits of Inter-Coflow Scheduling
While the network cares about flow-level metrics such as FCT and per-flow fairness, they can be
suboptimal for minimizing the time applications spend in communication. Instead of improving
network-level metrics that can be at odds with application-level goals, coflows improve perfor-
mance through application-aware management of network resources.

Consider Figure 5.1a. Assuming both coflows to arrive at the same time, Figure 5.1 compares
four different schedules. Per-flow fairness (Figure 5.1b) ensures max-min fairness among flows in
each link. However, fairness among flows of even the same coflow can increase CCT [67]. WSS
(Figure 5.1d) – the optimal algorithm in homogeneous networks – is up to 1.5× faster than per-
flow fairness for individual coflows [67]; but for multiple coflows, it minimizes the completion
time across all coflows and increases the average CCT. Recently proposed shortest-flow-first pri-
oritization mechanisms [37,118] (Figure 5.1c) decrease average FCT, but they increase the average
CCT by interleaving flows from different coflows. Finally, the optimal schedule (Figure 5.1e) min-
imizes the average CCT by finishing flows in the coflow order (C2 followed by C1). The FIFO
schedule [67, 82] would have been as good as the optimal if C2 arrived before C1, but it could be
as bad as per-flow fair sharing or WSS if C2 arrived later.

Deadline-Sensitive Communication Assume that C1 and C2 have the same deadline of 2 time
units – C1 would never meet its deadline as its minimum CCT is 4. Using per-flow fairness or
WSS, both C1 and C2 miss their deadlines. Using earliest-deadline-first (EDF) across flows [118],
C2 meets its deadline only 25% of the time. However, the optimal coflow schedule does not admit
C1, and C2 always succeeds.

1Pronounced \'vä-ris\.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 50

1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

F!

F! F!

F! F! F! F!

F! F! F!

2F!

3F! 4!

4F!

1! 2!

2!2!

(a) Datacenter fabric

Flow Size @!
1! 2! 3!

C1! 4! 1! 2!

C2! 0! 2! 2!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

2! 4!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

B/
W

 @
 In

gr
es

s!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

(b) Per-flow fairness

Flow Size @!
1! 2! 3!

C1! 4! 1! 2!

C2! 0! 2! 2!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

2! 4!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

B/
W

 @
 In

gr
es

s!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

(c) Per-flow prioritization

Flow Size @!
1! 2! 3!

C1! 4! 1! 2!

C2! 0! 2! 2!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

2! 4!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

B/
W

 @
 In

gr
es

s!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

(d) WSS [67]

Flow Size @!
1! 2! 3!

C1! 4! 1! 2!

C2! 0! 2! 2!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

2! 4!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

B/
W

 @
 In

gr
es

s!

C1 ends!C2 ends!

2! 4!

P3!

P2!

Time!

P1!

Both coflows end!

(e) The optimal schedule

Figure 5.1: Coflow scheduling over a 3 × 3 datacenter fabric with three ingress/egress ports
(a). Flows in ingress ports are organized by destinations and color-coded by coflows – C1 in or-
ange/light and C2 in blue/dark. Allocation of ingress port capacities (vertical axis) using different
mechanisms for the coflows in Figure 5.1a. Each port can transfer one unit of data in one time unit.
The average FCT and CCT for (b) per-flow fairness are 3.4 and 4 time units; (c) per-flow prioriti-
zation are 2.8 and 3.5 time units; (d) WSS are 3.6 and 4 time units; and (e) the optimal schedule
are 3 and 3 time units.

Note that egress ports do not experience any contention in these examples; when they do,
coflow-aware scheduling can be even more effective.

5.4 Varys Overview
Varys is a coordinated coflow scheduler to optimize either the performance or the predictability of
communication in data-intensive applications. In this section, we present a brief overview of Varys
to help the reader follow the analysis and design of inter-coflow scheduling algorithms (§5.5) and
Varys’s design details (§5.6).

5.4.1 Problem Statement
When improving performance, given a coflow with information about its individual flows, their
size, and endpoints, Varys must decide when to start its flows and at what rate to serve them to

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 51

minimize the average CCT of the cluster. It can preempt existing coflows to avoid head-of-line
blocking, but it must also avoid starvation. Information about a coflow is unknown prior to its
arrival; however, once a coflow arrives, it’s structure does not change over time.

When optimizing predictability, Varys must admit a new coflow if it can be completed within
its deadline without violating deadline guarantees of the already-admitted ones.

Irrespective of the objective, the inter-coflow scheduling problem is NP-hard (§5.5). Varys
implements a scheduler that exploits the variations in coflow characteristics (§A.3) to perform
reasonably well in realistic settings.

5.4.2 Architectural Overview
Varys master schedules coflows from different frameworks using global coordination (Figure 5.2).
It works in two modes: it either tries to minimize CCT or to meet deadlines. For the latter, it uses
admission control, and rejected coflows must be resubmitted later. Frameworks use a client library
to interact with Varys to register and define coflows (§5.6.1). The master aggregates all interactions
to create a global view of the network and determines rates of flows in each coflow (§5.6.2) that
are enforced by the client library.

Varys daemons, one on each machine, handle time-decoupled coflows, where senders and re-
ceivers are not simultaneously active. Instead of hogging the CPU, sender tasks (e.g., mappers)
of data-intensive applications often complete after writing their output to the disk. Whenever cor-
responding receivers (e.g., reducers) are ready, Varys daemons serve them by coordinating with
the master. Varys daemons use the same client library as other tasks. Additionally, these daemons
send periodic measurements of the network usage at each machine to Varys master. The master
aggregates them using existing techniques [63] to estimate current utilizations and use remaining
bandwidth (Rem(.)) during scheduling (§5.5.3).

We have implemented Varys in the application layer out of practicality – it can readily be
deployed in the cloud, while providing large improvements for both objectives we consider (§5.7).

Fault Tolerance Failures of Varys agents do not hamper job execution, since data can be trans-
ferred using regular TCP flows in their absence. Varys agents store soft states that can be re-
built quickly upon restart. In case of task failures and consequent restarts, corresponding flows are
restarted too; other flows of the same coflow, however, are not paused.

Scalability Varys reschedules only on coflow arrival and completion events. We did not observe
the typical number of concurrent coflows (tens to hundreds [67, 171]) to limit its scalability. Varys
batches control messages atO(100) milliseconds intervals to reduce coordination overheads, which
affect small coflows (§5.7.2). Fortunately, most traffic in data-intensive clusters are from large
coflows (§A.3). We do not use Varys for coflows with bottlenecks smaller than 25 MB in size.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 52

Put Get Reg

Network Fabric

Varys Master

Coflow Scheduler

Topology
Monitor

Usage
Estimator

Network Interface

(Distributed) File System

f
Comp. Tasks calling
Varys Client Library

TaskName

Sender Receiver Driver

Varys
Daemon

Varys
Daemon

Varys
Daemon

Figure 5.2: Varys architecture. Computation frameworks use the VarysClient library to interact
with Varys.

5.5 Clairvoyant Coflow Scheduling: Analytical Results
The inter-coflow scheduling problem is NP-hard. In this section, we provide insights into its com-
plexity and discuss desirable properties of an ideal scheduler along with associated tradeoffs. Based
on our understanding, we develop two inter-coflow scheduling algorithms: one to minimize CCTs
and another to guarantee coflow completions within their deadlines.

Detailed analysis and proofs can be found in Appendix B.

5.5.1 Problem Formulation and Complexity
We consider two objectives for optimizing data-intensive communication: either minimizing the
average CCT or improving predictability by maximizing the number of coflows that meet deadlines
(§B.1). Achieving either objective is NP-hard, even when

1. all coflows can start at the same time,

2. information about their flows are known beforehand, and

3. ingress and egress ports have the same capacity.

We prove it by reducing the concurrent open-shop scheduling problem [180] to inter-coflow
scheduling (Theorem B.1.1).

The online inter-coflow scheduling problem is even more difficult to solve because of the fol-
lowing reasons:

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 53

1. Capacity Constraints: Ingress and egress ports of the datacenter fabric have finite, possibly
heterogeneous, capacities. Hence, the optimal solution must find the best ordering of flows
to dispatch at each ingress port and simultaneously calculate the best matching at the egress
ports. Furthermore, when optimizing for predictability, it must decide whether or not to admit
a coflow.

2. Lack of Future Knowledge: Arrival times and characteristics of new coflows and their
flows cannot be predicted.

Because the rate of any flow depends on its allocations at both ingress and egress ports, we refer
to the inter-coflow scheduling problem as an instance of the concurrent open shop scheduling with
coupled resources (Remark B.1.2). To the best of our knowledge, this variation of the problem –
with ordering and matching requirements – has not appeared in the literature prior to this work.

5.5.2 Desirable Properties and Tradeoffs
Efficient scheduling (minimizing completion times) and predictable scheduling (guaranteeing
coflow completions within their deadlines) are inherently conflicting. The former requires preemp-
tive solutions to avoid head-of-line blocking. Shortest-remaining-time-first (SRTF) for optimally
scheduling flows on a single link is an example [118]. Preemption, in the worst case, can lead to
starvation; e.g., SRTF starves long flows. The latter, on the contrary, requires admission control to
provide guarantees.

We expect an ideal scheduler to satisfy the following additional goals:

1. Starvation Freedom: Coflows, irrespective of their characteristics, should not starve for
arbitrarily long periods.

2. Work-conserving Allocation: Available resources should be used as much as possible.

The former ensures eventual completion of coflows irrespective of system load. The latter avoids
underutilization of the network, which intuitively should result in lower CCTs and higher admis-
sions. However, both are at odds with our primary objectives (§B.2).

Predictable scheduling has an additional goal.

3. Guaranteed Completion: If admitted, a coflow must complete within its deadline.

In the following, we present algorithms that achieve high network utilization, and ensure star-
vation freedom when minimizing CCT (§5.5.3) and guarantees completion of admitted coflows
when maximizing predictability (§5.5.4).

5.5.3 Inter-Coflow Scheduling to Minimize CCT
Given the complexity, instead of finding an optimal algorithm, we focus on understanding what
an offline optimal schedule might look like under simplifying assumptions. Next, we compute the

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 54

minimum time to complete a single coflow. We use this result as a building block to devise a
scheduling heuristic and an iterative bandwidth allocation algorithm. We conclude by presenting
the necessary steps to transform our offline solution to an online one with guarantees for starvation
freedom and work conservation.

Solution Approach

Consider the offline problem of scheduling |C| coflows (C = {C1, C2, . . . , C|C|}) that arrived at
time 0. The optimality of the shortest-remaining-processing-time (SRTF) heuristic on a single link
suggests that shortest- or smallest-first schedules are the most effective in minimizing completion
times [37,118]. However, in the multi-link scenario, links can have different schedules. This makes
the search space exponentially large – there are ((|C|P)!)P possible solutions when scheduling |C|
coflows with P 2 flows each on a P × P fabric!

If we remove the capacity constraints from either ingress or egress ports, under the assumptions
of Section 5.5.1, the coflow scheduling problem simplifies to the traditional concurrent open shop
scheduling problem, which has optimal permutation schedules [149]; meaning, scheduling coflows
one after another is sufficient, and searching within the |C|! possible schedules is enough. Unfor-
tunately, permutation schedules can be suboptimal for coupled resources (Theorem B.3.1), which
can lead to flow preemptions at arbitrary points in time – not just at coflow arrivals and completions
(Remark B.3.2). To avoid incessant rescheduling, we restrict ourselves to permutation schedules.

The Smallest Effective Bottleneck First Heuristic

Once scheduled, a coflow can impact the completion times of all other coflows scheduled after it.
Our primary goal is to minimize the opportunity lost in scheduling each coflow.

Given the optimality of the shortest- or smallest-first policy in minimizing the average FCT
[37, 118], a natural choice for scheduling coflows would be to approximate that with a Shortest-
Coflow-First (SCF) heuristic. However, SCF does not take into account the width of a coflow. A
width-based alternative to SCF is the Narrowest-Coflow-First (NCF) heuristic, but NCF cannot
differentiate between a short coflow from a long one. A smallesT-Coflow-First (TCF) heuristic is a
better alternative than the two – while SCF can be influenced just by a single long flow (i.e., coflow
length) and NCF relies only on coflow width, TCF responds to both.

However, the actual completion time of coflow (Γ) actually depends on its bottleneck (see
Equation (4.1)). We propose the Smallest Effective Bottleneck First (SEBF) heuristic that consid-
ers a coflow’s length, width, size, and skew to schedule it in the smallest-Γ-first order. Figure 5.3
shows an example: although C2 (orange/light) is bigger than C1 in length, width, and size, SEBF
schedules it first to reduce the average CCT to 5 time units from 5.5. While no heuristic is per-
fect, we found SEBF to perform noticeably better than TCF, SCF, and NCF in both trace-driven
and synthetic simulations. Additionally, SEBF performs more than 3× better than non-preemptive
coflow schedulers (§5.7.4).

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 55

1!

2!

3!

1!

2!

3!

3!

2!

2!

3!

3!

7!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

3!

7!

P3!

P2!

Time!

P1!

C2 ends!C1 ends!

4!

(a) Input

1!

2!

3!

1!

2!

3!

3!

2!

2!

3!

3!

7!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

3!

7!

P3!

P2!

Time!

P1!

C2 ends!C1 ends!

4!

(b) SCF/NCF/TCF

1!

2!

3!

1!

2!

3!

3!

2!

2!

3!

3!

7!

P3!

P2!

Time!

P1!

C1 ends!C2 ends!

3!

7!

P3!

P2!

Time!

P1!

C2 ends!C1 ends!

4!

(c) SEBF

Figure 5.3: Allocations of egress port capacities (vertical axis) for the coflows in (a) on a 3 × 3
fabric for different coflow scheduling heuristics.

Iterative MADD

Given a schedule of coflows C′ = (C1, C2, . . . , C|C|), the next step is to determine the rates of
individual flows. While single-link optimal heuristics would allocate the entire bandwidth of the
link to the scheduled flow, we observe that completing a flow faster than the bottleneck does not
impact the CCT in coflow scheduling.

Given Γ, the minimum completion time of a coflow can be attained as long as all flows finish at
time Γ. We can ensure that by setting the rates (rij) of each flow to dij/Γ. We defined this algorithm
(lines 7–10 in Pseudocode 1) as MADD. It allocates the least amount of bandwidth to complete a
coflow in minimum possible time.

We use MADD as a building block to allocate rates for the given schedule. We apply MADD to
each coflow Ci ∈ C′ to ensure its fastest completion using minimum bandwidth, and we iteratively
distribute (line 15) its unused bandwidth to coflows Cj (i < j ≤ |C|). Once Ci completes, the
iterative procedure is repeated to complete Ci+1 and to distribute its unused bandwidth. We stop
after C|C| completes.

From Offline to Online

Transforming to an online scheduling environment from an offline one requires addressing at least
two major challenges: achieving work conservation and avoiding starvation. We address both
through minor adjustments to the proposed solutions.

Letting resources idle – as the offline iterative MADD might do – can hurt performance in the
online case. We introduce the following backfilling pass in MINCCTOFFLINE (line 16 of Pseu-
docode 1) to utilize the unallocated bandwidth throughout the fabric as much as possible. For each
ingress port P in

i , we allocate its remaining bandwidth to the coflows in C′; for each active coflowC

in P in
i ,Rem(P in

i) is allocated toC’s flows in their current rij ratios, subject to capacity constraints
in corresponding Pout

j .

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 56

Pseudocode 1 Coflow Scheduling to Minimize CCT
1: procedure ALLOCBANDWIDTH(Coflows C, Rem(.), Bool cct)
2: for all C ∈ C do
3: τ = ΓC (Calculated using Equation (4.1))
4: if not cct then
5: τ = DC

6: end if
7: for all dij ∈ C do . MADD
8: rij = dij/τ

9: Update Rem(P in
i) and Rem(Pout

j)
10: end for
11: end for
12: end procedure

13: procedure MINCCTOFFLINE(Coflows C, C, Rem(.))
14: C′ = SORT ASC (C ∪ C) using SEBF
15: allocBandwidth(C′, Rem(.), true)
16: Distribute unused bandwidth to C ∈ C′ . Work conservation (§5.5.3)
17: return C′
18: end procedure

19: procedure MINCCTONLINE(Coflows C, C, Rem(.))
20: if timeSinceLastDelta() < T then . T -interval: Decrease CCT
21: C′ = minCCTOffline(C, C, Rem(.))
22: Update Czero, the set of starved coflows
23: else . δ-interval: Starvation freedom
24: C∗ =

⋃
C for all C ∈ Czero

25: Apply MADD on C∗

26: Schedule a call to minCCTOnline(.) after δ interval
27: end if
28: end procedure

Preemption to maintain an SEBF schedule while optimizing CCT may lead to starvation. To
avoid perpetual starvation, we fix tunable parameters T and δ, where T � δ, and alternate the
overall algorithm (MINCCTONLINE) between time intervals of length T and δ. For a time period
of length T , we use MINCCTOFFLINE to minimize CCT. At the end of time T , we consider all
coflows in the system which have not received any service during the last T -interval (Czero). We
treat all of them as one collective coflow, and apply MADD for a time period of length δ (lines 24–
26 in Pseudocode 1). All coflows that were served during the last T -interval do not receive any
service during this δ-interval. At the end of the δ-interval, we revert back, and repeat.

This ensures that all coflows receive non-zero service in every (T + δ) interval and eventually
complete. This is similar to ensuring at least one ticket for each process in lottery scheduling [197].

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 57

Pseudocode 2 Coflow Scheduling to Guarantee Completion Within Deadline
1: procedure MEETDEADLINE(Coflows C, C, Rem(.))
2: allocBandwidth(C, Rem(.), false) . Recalculate min rates for C ∈ C
3: if ΓC ≤ DC then . Admission control
4: C′ = Enqueue C to C . Add C in the arrival order
5: allocBandwidth(C′, Rem(.), false)
6: Distribute unused bandwidth to C ∈ C′ . Work conservation
7: return true
8: end if
9: Distribute unused bandwidth to C ∈ C

10: return false
11: end procedure

Avoiding starvation comes at the cost of an increased average CCT. At every (T + δ) interval, the
total CCT increases by at most |C|δ, and it depends on the ratio of T and δ.

5.5.4 Inter-Coflow Scheduling to Guarantee Deadline
To guarantee a coflow’s completion within deadline (DC), completing its bottlenecks as fast as
possible has no benefits. A coflow can meet its deadline using minimum bandwidth as long as all

flows finish exactly at the deadline. We can achieve that by setting rij =
dij
DC

using MADD.
To provide guarantees in the online scenario, we introduce admission control (line 3 in Pseu-

docode 2). We admit a coflow C, if and only if it can meet its deadline without violating that of
any existing coflow. Specifically, we recalculate the minimum bandwidth required to complete all
existing coflows within their deadlines (line 2 in Pseudocode 2) and check if the minimum CCT
of C, ΓC ≤ DC . Otherwise, C is rejected. An admitted coflow is never preempted, and a coflow
is never rejected if it can safely be admitted. Hence, there is no risk of starvation. We use the
backfilling procedure from before for work conservation.

5.6 Design Details
We have implemented Varys in about 5, 000 lines of Scala with extensive use of Akka [1] for
messaging and the Kryo serialization library [18]. This section illustrates how frameworks interact
with Varys and discusses how Varys schedules coflows.

5.6.1 Varys Client Library: The Coflow API
Varys client library provides an API similar to DOT [190] to abstract away the underlying schedul-
ing and communication mechanisms. Cluster frameworks (e.g., Spark, Hadoop, or Dryad) must
create VarysClient objects to invoke the API and interact with Varys. User jobs, however, do not
require any modifications.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 58

VarysClientMethods Caller

register(numFlows, [options]) =⇒ coflowId Driver
put(coflowId, dataId, content, [options]) Sender
get(coflowId, dataId) =⇒ content Receiver
unregister(coflowId) Driver

Table 5.1: The Coflow API

The coflow API has four primary methods (Table 5.1). Framework drivers initialize a coflow
through register(), which returns a unique coflowId from Varys master. numFlows is a hint for
the scheduler on when to consider the coflow READY to be scheduled. Additional information
or hints (e.g., coflow deadline or dependencies) can be given through options – an optional list of
key-value pairs. The matching unregister() signals coflow completion.

A sender initiates the transfer of a content with an identifier dataId using put(). A content can
be a file on disk or an object in memory. For example, a mapper would put() r pieces of content
for r reducers in a MapReduce job, and the Spark driver would put() a common piece of data to
be broadcasted from memory to its workers (we omit corresponding put() signatures for brevity).
The dataId of a content is unique within a coflow. Any flow created to transfer dataId belongs to
the coflow with the specified coflowId.

A receiver indicates its interest in a content using its dataId through get(). Only after receiv-
ing a get() request, the scheduler can create and consider a flow for scheduling. Receiver tasks
learn the dataIds of interest from respective framework drivers. Varys scheduler determines when,
from where, and at what rate to retrieve each requested dataId. VarysClient enforces scheduler-
determined rates at the application layer and notifies the master upon completion of get().

Usage Example Consider shuffle – the predominant communication pattern in cluster frame-
works. Shuffle transfers the output of each task (mapper) in one computation stage to the tasks
(reducers) in the next. The following example shows how to enable a 3×2 shuffle (with 3 mappers
and 2 reducers) to take advantage of inter-coflow scheduling. Assume that all entities interacting
with Varys have their own instances of VarysClient objects named client.

First, the driver registers the shuffle indicating that Varys should consider it READY after
receiving get() for all six flows.

val cId = client.register(6)

When scheduling each task, the driver passes along the cId for the shuffle. Each mapper m
uses cId when calling put() for each reducer r.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 59

// Read from DFS, run user-written map method,

// and write intermediate data to disk.

// Now, invoke the coflow API.

for (r <- reducers)

client.put(cId, dId-m-r, content-m-r)

In the snippet above, dId-m-r is an application-defined unique identifier for individual pieces of
data and content-m-r is the corresponding path to disk. This is an example of time-decoupled
communication.

Reducers use cId to retrieve the shuffled pieces of content by the mappers (served by Varys
daemons).

// Shuffle using the coflow API.

for (m <- mappers)

content-m-r = client.get(cId, dId-m-r)

// Now, sort, combine, and write to DFS.

Once all reducers are done, the driver terminates the coflow.

client.unregister(cId)

Note that the example abstracts away some details – e.g., the pipelining between shuffle and sort
phases in reducers, which can be handled by providing a VarysInputStream implementation.

Replacing the communication layer of a data-intensive framework with just the aforementioned
changes can enable all its user jobs to take advantage of inter-coflow scheduling.

5.6.2 Inter-Coflow Scheduling in Varys
Varys implements the algorithms in Section 5.5 for inter-coflow scheduling, which are called upon
coflow arrival and completion events.Rem(.) is calculated from the aggregated measurements col-
lected by Varys daemons. Pseudocode 3 lists the key event handlers in Varys. Initially, all coflows
are marked UNREADY (ONCOFLOWREGISTER). The size of a coflow is updated as VarysClient
instances periodically notify flow-related events using ONFLOWPUT and ONFLOWGET. A coflow
is considered READY to be scheduled after numFlows get() calls (ONFLOWGET). Varys master
groups the new allocations calculated by the scheduler by respective VarysClients and sends the
changes asynchronously.

Choice of T and δ Values A smaller δ in Pseudocode 1 ensures a lower impact on the average
CCT. However, too small a δ can cause the underlying transport protocol (e.g., TCP) to behave
erratically due to significant variation of available bandwidth over short time intervals. We suggest
δ to be O(100) milliseconds and T to be O(1) seconds.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 60

Pseudocode 3 Message Handlers in Varys Scheduler
1: procedure ONCOFLOWREGISTER(Coflow C)
2: Mark C as UNREADY
3: Ccur = Ccur ∪ {C} . Ccur is the set of all coflows
4: end procedure

5: procedure ONCOFLOWUNREGISTER(Coflow C)
6: Ccur = Ccur \ {C}
7: Cready = C.filter(READY)
8: Call appropriate scheduler from Section 5.5
9: end procedure

10: procedure ONFLOWPUT(Flow f , Coflow C)
11: Update Size(C) and relevant data structures
12: end procedure

13: procedure ONFLOWGET(Flow f , Coflow C)
14: Update relevant data structures
15: Mark C as READY after get() is called numFlows times
16: if C is READY then
17: Cready = C.filter(READY)
18: Call appropriate scheduler from Section 5.5
19: end if
20: end procedure

5.7 Evaluation
We evaluated Varys through a set of experiments on 100-machine EC2 [3] clusters using a
Hive/MapReduce trace collected from a large production cluster at Facebook. For a larger scale
evaluation, we used a trace-driven simulator that performs a detailed replay of task logs from the
same trace. The highlights of our evaluation are as follows.

• For communication-dominated jobs, Varys improves the average (95th percentile) CCT and
job completion time by up to 3.16× (3.84×) and 2.5× (2.94×), respectively, over per-flow
fairness. Across all jobs, the improvements are 1.85× (1.74×) and 1.25× (1.15×) (§5.7.2).

• Simulations show that Varys improves the average (95th percentile) CCT by 3.26× (5.19×)
over per-flow prioritization mechanisms (§5.7.2).

• Varys enables almost 2× more coflows to complete within their deadlines in EC2 experi-
ments (§5.7.3).

• Varys does not cause starvation, and simulations show Varys to be 3.33× faster than a non-
preemptive solution (6.9× at the 95th percentile) (§5.7.4).

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 61

Shuffle Duration < 25% 25–49% 50–74% ≥ 75%

% of Jobs 61% 13% 14% 12%

Table 5.2: Jobs binned by time spent in communication.

Coflow Bin 1 (SN) 2 (LN) 3 (SW) 4 (LW)

Length Short Long Short Long
Width Narrow Narrow Wide Wide
% of Coflows 52% 16% 15% 17%

% of Bytes 0.01% 0.67% 0.22% 99.10%

Table 5.3: Coflows binned by length (Short and Long) and width (Narrow and Wide).

5.7.1 Methodology
Workload Our workload is based on a Hive/MapReduce trace at Facebook that was collected on
a 3000-machine cluster with 150 racks. The original cluster had a 10 : 1 core-to-rack oversubscrip-
tion ratio with a total bisection bandwidth of 300 Gbps. We scale down jobs accordingly to match
the maximum possible 100 Gbps bisection bandwidth of our deployment. During the derivation,
we preserve the original workload’s communication characteristics.

We consider jobs with non-zero shuffle and divide them into bins (Table 5.2) based on the
fraction of their durations spent in shuffle. Table 5.3 divides the coflows in these jobs into four
categories based on their characteristics. We consider a coflow to be short if its longest flow is less
than 5 MB and narrow if it involves at most 50 flows.

For deadline-constrained experiments, we set the deadline of a coflow to be its minimum com-
pletion time in an empty network (Γempty) multiplied by

(
1 + U(0, x)

)
, where U(0, x) is a uni-

formly random number between 0 and x. Unless otherwise specified, x = 1. The minimum dead-
line is 200 milliseconds.

Cluster Our experiments use extra large high-memory EC2 instances, which appear to occupy
entire physical machines and have enough memory to perform all experiments without introducing
disk overheads. We observed bandwidths close to 800 Mbps per machine on clusters of 100 ma-
chines. We use a compute engine similar to Spark [208] that uses the coflow API. We use δ = 200
milliseconds and T = 2 seconds as defaults.

Simulator We use a trace-driven simulator to gain more insights into Varys’s performance at a
larger scale. The simulator performs a detailed task-level replay of the Facebook trace. It preserves
input-to-output ratios of tasks, locality constraints, and inter-arrival times between jobs. It runs at
10s decision intervals for faster completion.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 62

EC2$E2E$Improv-

0

1

2

3

4

5

<25% 25-49% 50-74% >=75% All JobsN
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. V
ar

ys

Perc. of Job Duration Spent in Communication

Average 95th Percentile

(a) Improvements in job completion times

EC2$Comm$Improv-

0

1

2

3

4

5

<25% 25-49% 50-74% >=75% All JobsN
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. V
ar

ys

Perc. of Job Duration Spent in Communication

Average 95th Percentile

(b) Improvements in time spent in communication

Figure 5.4: [EC2] Average and 95th percentile improvements in job and communication comple-
tion times over per-flow fairness using Varys.

Metrics Our primary metric for comparison is the improvement in average completion times of
coflows and jobs (when its last task finished) in the workload. We measure it as the completion
time of a scheme normalized by Varys’s completion time; i.e.,

Normalized Completion Time =
Compared Duration

Varys’s Duration

If the normalized completion time of a scheme is greater (smaller) than one, Varys is faster
(slower).

For deadline-sensitive coflows, the primary metric is the percentage of coflows that meet their
deadlines.

The baseline for our deployment is TCP fair sharing. We compare the trace-driven simulator
against per-flow fairness as well. Due to the lack of implementations of per-flow prioritization
mechanisms [37, 118], we compare against them only in simulation.

5.7.2 Varys’s Performance in Minimizing CCT
Figure 5.4a shows that inter-coflow scheduling reduced the average and 95th percentile comple-
tion times of communication-dominated jobs by up to 2.5× and 2.94×, respectively, in EC2 experi-

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 63

EC2$Coflow$Improv-

1.
94

2.
79

1.
46 1.

83

1.
85

1.
82

2.
91

1.
59 2.

23

1.
74

0

1

2

3

4

5

Bin 1 Bin 2 Bin 3 Bin 4 ALLN
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. V
ar

ys

Coflow Types

Average 95th Percentile

Figure 5.5: [EC2] Improvements in the average and 95th percentile CCTs using coflows w.r.t. the
default per-flow fairness mechanism.

ments. Corresponding average and 95th percentile improvements in the average CCT (CommTime)
were up to 3.16× and 3.84× (Figure 5.4b). Note that varying improvements in the average CCT
in different bins are not correlated, because it depends more on coflow characteristics than that
of jobs. However, as expected, jobs become increasingly faster as the communication represent
a higher fraction of their completion times. Across all bins, the average end-to-end completion
times improved by 1.25× and the average CCT improved by 1.85×; corresponding 95th percentile
improvements were 1.15× and 1.74×.

Figure 5.5 shows that Varys improves CCT for diverse coflow characteristics. Because bottle-
necks are not directly correlated with a coflow’s length or width, pairwise comparisons across bins
– especially those involving bin-2 and bin-3 – are harder. We do observe more improvements for
coflows in bin-1 than bin-4 in terms of average CCT, even though their 95th percentile improve-
ments contradict. This is due to coordination overheads in Varys – recall that Varys does not handle
small coflows to avoid fixed overheads.

Figure 5.6a presents comparative CDFs of CCTs for all coflows. Per-flow fairness performs
better – 1.08× on average and 1.25× at the 95th percentile – only for some of the tiny, sub-second
(< 500 milliseconds) coflows, which still use TCP fair sharing. As coflows become larger, the
advantages of coflow scheduling becomes more prominent. We elaborate on Varys’s overheads
next; later, we show simulation results that shed more light on the performance of small coflows in
the absence of coordination overheads.

Overheads Control plane messages to and from the Varys master are the primary sources of
overheads. Multiple messages from the same endpoint are batched whenever possible. At peak
load, we observed a throughput of 4000+ messages/second at the master. The scheduling algorithm
took 17 milliseconds on average to calculate new schedules on coflow arrival or departure. The
average time to distribute new schedules across the cluster was 30 milliseconds.

An additional source of overhead is the synchronization time before a coflow becomes READY
for scheduling. Recall that a coflow waits for numFlows get() calls; hence, a single belated get()
can block the entire coflow. In our experiments, the average duration to receive all get() calls was
44 milliseconds with 151 milliseconds being the 95th percentile.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 64

0

0.5

1

0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 C

ofl
ow

s

Coflow Completion Time (Seconds)

Varys
Per-Flow Fairness

(a) EC2

0

1

0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 C

ofl
ow

s

Coflow Completion Time (Seconds)

Varys
Per-Flow Prioritization
Per-Flow Fairness

(b) Simulation

Figure 5.6: CCT distributions for Varys, per-flow fairness, and per-flow prioritization schemes (a)
in EC2 deployment and (b) in simulation. The X-axes are in logarithmic scale.

FAIR
PDQ

20
.7

0

4.
30

18
.2

4

2.
25 3.
26

13
.8

5

3.
39

14
.1

1

3.
36 5.
19

4.
80 8.

31

1.
76

1.
91

2.
166.

03 7.
95

1.
42 2.
50

2.
49

0

10

20

30

40

Bin 1 Bin 2 Bin 3 Bin 4 ALLFa
ct

or
 o

f I
m

pr
ov

em
en

t

Coflow Types

Per-Flow Prioritization (Average)
Per-Flow Prioritization (95th Percentile)
Per-Flow Fairness (Average)
Per-Flow Fairness (95th Percentile)

Figure 5.7: [Simulation] Improvements in the average and 95th percentile CCTs using inter-coflow
scheduling.

A large fraction of these overheads could be avoided in the presence of in-network isolation of
control plane messages [89].

Trace-Driven Simulation We compared the performance of inter-coflow scheduling against per-
flow fairness and prioritization schemes in simulations. Without coordination overheads, the im-
provements are noticeably larger (Figure 5.7) – the average and 95th percentile CCTs improved by
2.16× and 2.49× over per-flow fairness and by 3.26× and 5.19× over per-flow prioritization.

Note that comparative improvements for bin-1 w.r.t. other bins are significantly larger than
that in experiments because of the absence of scheduler coordination overheads. We observe larger
absolute values of improvements in Figure 5.7 in comparison to the ones in Figure 5.5. Primary fac-
tors for this phenomenon include instant scheduling, zero-latency setup/cleanup/update of coflows,
and perfectly timed flow arrivals (i.e., coflows are READY to be scheduled upon arrival) in the sim-
ulation. In the absence of these overheads, we see in Figure 5.6b that Varys can indeed outperform
per-flow schemes even for sub-second coflows.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 65

0
25
50
75

100

Varys Fair Varys Fair Varys Fair

Actual
Deadline

Within 50%
of Deadline

Within 100%
of Deadline

%
 C

ofl
ow

s

Missed Deadline
Not Admitted
Met Deadline

Figure 5.8: [EC2] Percentage of coflows that meet deadline using Varys in comparison to per-flow
fairness. Increased deadlines improve performance.

What About Per-Flow Prioritization? Figure 5.7 highlights that per-flow prioritization mecha-
nisms are even worse (by 1.51×) than per-flow fairness provided by TCP when optimizing CCTs.
The primary reason is indiscriminate interleaving across coflows – while all flows make some
progress using flow-level fairness, per-flow prioritization favors only the small flows irrespective
of the progress of their parent coflows. However, as expected, flow-level prioritization is still 1.08×
faster than per-flow fairness in terms of the average FCT. Figure 5.6b presents the distribution of
CCTs using per-flow prioritization in comparison to other approaches.

How Far are We From the Optimal? While finding the optimal schedule is infeasible, we
tried to find an optimistic estimation of possible improvements by comparing against an offline 2-
approximation combinatorial ordering heuristic for coflows without coupled resources [149]. We
found that the average CCT did not change using the combinatorial approach. For bin-1 to bin-4,
the changes were 0.78×, 1.03×, 0.92×, and 1.13×, respectively.

5.7.3 Varys’s Performance for Deadline-Sensitive Coflows
Inter-coflow scheduling allowed almost 2× more coflows to complete within corresponding dead-
lines in EC2 experiments (Figure 5.8) – 57% coflows met their deadlines using Varys as opposed to
30% using the default mechanism. Coflows across different bins experienced similar results, which
is expected because Varys does not differentiate between coflows when optimizing for deadlines.

Recall that because the original trace did not contain coflow-specific deadlines, we introduced
them based on the minimum CCT of coflows (§5.7.1). Hence, we did not expect 100% admission
rate. However, a quarter of the admitted coflows failed to meet their deadlines. This goes back to
the lack of network support in estimating utilizations and enforcing Varys-determined allocations:
Varys admitted more coflows than it should have had, which themselves missed their deadlines and
caused some others to miss as well. Trace-driven simulations later shed more light on this.

To understand how far off the failed coflows were, we analyzed if they could complete with
slightly longer deadlines. After doubling the deadlines, we found that almost 94% of the admitted
coflows succeeded using Varys.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 66

10
40
70

100

0

25

50

75

100

0.1 0.5 1 2 10

%
 C

ofl
ow

s t
ha

t M
et

Th

ei
r

D
ea

dl
in

e

Deadline = (1+Uniform(0, x)) Times the Min CCT

Varys
Virtual Cluster
Per-Flow Prioritization
Per-Flow Fairness

Figure 5.9: [Simulation] More coflows meet deadline using inter-coflow scheduling than using
per-flow fairness and prioritization schemes.

Trace-Driven Simulation In trace-driven simulations, for the default case (x=1), Varys admitted
75% of the coflows and all of them met their deadlines (Figure 5.9). Note that the admission rate
is lower than that in our experiments. Prioritization schemes fared better than per-flow fairness
unlike when the objective was minimizing CCT: 59% coflows completed within their deadlines in
comparison to 52% using fair sharing.

As we changed the deadlines of all coflows by varying x from 0.1 to 10, comparative perfor-
mance of all the approaches remained almost the same. Performance across bins were consistent
as well.

What About Reservation Schemes? Because the impact of admission control is similar to re-
serving resources, we compared our performance with that of the Virtual Cluster (VC) abstrac-
tion [46], where all machines can communicate at the same maximum rate through a virtual non-
blocking switch. The VC abstraction admitted and completed slightly fewer coflows (73%) than
Varys (75%), because reservation using VCs is more conservative.

5.7.4 Impact of Preemption
While minimizing CCT, preemption-based mechanisms can starve certain coflows when the system
is overloaded. Varys takes precautions (§5.5.3) to avoid such scenarios. As expected, we did not
observe any perpetual starvation during experiments or simulations.

What About a Non-Preemptive Scheduler? Processing coflows in their arrival order (i.e.,
FIFO) avoids starvation [67]. However, simulations confirmed that head-of-line blocking signif-
icantly hurts performance – especially, the short coflows in bin-1 and bin-3.

We found that processing coflows in the FIFO order can result in 31.63×, 6.06×, 21.72×,
and 1.95× slower completion times for bin-1 to bin-4. The average (95th percentile) CCT became
3.33× (6.9×) slower than that using Varys.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 67

Coflows %SN %LN %SW %LW

Mix-N 800 48% 40% 2% 10%

Mix-W 369 22% 15% 24% 39%

Mix-S 526 50% 17% 10% 23%

Mix-L 272 39% 27% 3% 31%

Table 5.4: Four extreme coflow mixes from the Facebook trace.

0

1

2

3

Bin 1 Bin 2 Bin 3 Bin 4 ALLN
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. V
ar

ys

Mix-N Mix-W
Mix-S Mix-L

Figure 5.10: [EC2] Improvements in the average CCT using coflows for different coflow mixes
from Table 5.4.

5.7.5 Impact on Network Utilization
To understand Varys’s impact on network utilization, we compared the ratios of makespans in the
original workload as well as the ones in Table 5.4. Given a fixed workload, a change in makespan
means a change in aggregate network utilization.

We did not observe significant changes in makespan in our EC2 experiments – the exact factors
of improvements were 1.02×, 1.06×, 1.01×, 0.97×, and 1.03× for the five workloads. This is
expected because while Varys is not work-conserving at every point in time, its overall utilization
is the same as non-coflow approaches.

Makespans for both per-flow fairness and coflow-enabled schedules were the same in the trace-
driven simulation.

5.7.6 Impact of Coflow Mix
To explore the impact of changes in the coflow mix, we selected four extreme hours (Table 5.4)
from the trace and performed hour-long experiments on EC2. These hours were chosen based on
the high percentage of certain types of coflows (e.g., narrow ones in Mix-N) during those periods.

Figure 5.10 shows that the average CCT improves irrespective of the mix, albeit in varying
degrees. Observations made earlier (§5.7.2) still hold for each mix. However, identifying the exact
reason(s) for different levels of improvements is difficult. This is due to the online nature of the
experiments – the overall degree of improvement depends on the instantaneous interplay of con-

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 68

0
1
2
3
4
5
6
7

10 40 70 100N
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. V
ar

ys

Number of Concurrent Coflows

Per-Flow Prioritization
Per-Flow Fairness

Figure 5.11: [Simulation] Improvements in the average CCT for varying numbers of concurrent
coflows.

0

25

50

75

100

10 40 70 100

%
 C

ofl
ow

s t
ha

t M
et

Th

ei
r

D
ea

dl
in

e

Number of Concurrent Coflows

Varys
Per-Flow Prioritization
Per-Flow Fairness

Figure 5.12: [Simulation] Changes in the percentage of coflows that meet deadlines for varying
numbers of concurrent coflows.

current coflows. We also did not observe any clear correlation between the number of coflows or
workload size and corresponding improvements.

5.7.7 Impact of Cluster/Network Load
So far we have evaluated Varys’s improvements in online settings, where the number of concurrent
coflows varied over time. To better understand the impact of network load, we used the same
coflow mix as the original trace but varied the number of concurrent coflows in an offline setting.
We see in Figure 5.11 that Varys’s improvements increase with increased concurrency: per-flow
mechanisms fall increasingly further behind as they ignore the structures of more coflows. Also,
flow-level fairness consistently outperforms per-flow prioritization mechanisms in terms of the
average CCT.

Deadline-Sensitive Coflows We performed a similar analysis for deadline-sensitive coflows. Be-
cause in this case Varys’s performance depends on the arrival order, we randomized the coflow
order across runs and present their average in Figure 5.12. We observe that as the number of co-

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 69

existing coflows increases, a large number of coflows (37% for 100 concurrent coflows) meet their
deadlines using Varys; per-flow mechanisms completely stop working even before. Also, per-flow
prioritization outperforms (however marginally) flow-level fairness for coflows with deadlines.

5.8 Discussion
Scheduling With Unknown Flow Sizes Knowing or estimating exact flow sizes is difficult in
frameworks that push data to the next stage as soon as possible [119], and without known flow
sizes, preemption becomes impractical. FIFO scheduling can solve this problem, but it suffers from
head-of-line blocking (§5.7.4). We believe that coflow-level fairness can be a nice compromise
between these two extremes. However, the definition and associated properties of fairness at the
coflow level is an open problem.

Avoiding Overheads for Small Coflows Varys’s centralized design makes it less useful for small
coflows (§5.4); however, small coflows contribute less than 1% of the traffic in data-intensive clus-
ters (§A.3). Furthermore, in-network isolation of control plane messages [89] or faster signaling
channels such as RDMA [85] can reduce Varys’s application-layer signaling overheads (§5.7.2) to
support even smaller coflows.

One possible approach toward mitigating this issue is designing decentralized approximations
of our algorithms. This requires new algorithms and possible changes to network devices, unlike
our application-layer design. Another approach would be to automatically avoiding coordination
until it becomes absolutely necessary.

Handling Coflow Dependencies While most jobs require only a single coflow, dataflow
pipelines (e.g., Dryad, Spark) can create multiple coflows with dependencies between them [65].
A simple approach to support coflow dependencies would be to order first by ancestry and then
breaking ties using SEBF. Some variation of the Critical-Path Method [131] might perform even
better. We leave it as a topic of future work. Note that dependencies can be passed along to the
scheduler through options in the register() method.

Multi-Wave Coflows Large jobs often schedule mappers in multiple waves [39]. A job can cre-
ate separate coflows for each wave. Alternatively, if the job uses its wave-width (i.e., the number
of parallel mappers) as numFlows in register(), Varys can handle each wave separately. Appli-
cations can convey information about wave-induced coflows to the scheduler as dependencies.

In-Network Bottlenecks Varys performs well even when the network is not a non-blocking
switch (§5.7). If likely bottleneck locations are known, e.g., rack-to-core links are typically over-
subscribed [63], Varys can be extended to allocate rack-to-core bandwidth instead of NIC band-
width. When bottlenecks are unknown, e.g., due to in-network failures, routing, or load imbalance,
Varys can react based on bandwidth estimations collected by its daemons. Nonetheless, designing
and deploying coflow-aware routing and load balancing techniques remain an open challenge.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 70

5.9 Related Work
Coflow Schedulers Varys improves over Orchestra [67] in four major ways. First, Orchestra pri-
marily optimizes individual coflows and uses FIFO among them; whereas, Varys uses an efficient
coflow scheduler to significantly outperform FIFO. Second, Varys supports deadlines and ensures
guaranteed coflow completion. Third, Varys uses a rate-based approach instead of manipulating the
number of TCP flows, which breaks if all coflows do not share the same endpoints. Finally, Varys
supports coflows from multiple frameworks such as Mesos [117] handles non-network resources.

Baraat [82] is a FIFO-based decentralized coflow scheduler focusing on small coflows. It uses
fair sharing to avoid head-of-line blocking and does not support deadlines. Furthermore, we for-
mulate the coflow scheduling problem and analyze its characteristics.

Datacenter Traffic Management Hedera [33] manages flows using a centralized scheduler to
increase network throughput, and MicroTE [51] adapts to traffic variations by leveraging their
short-term predictability. However, both work with flows and are unsuitable for optimizing CCTs.
Sinbad [63] uses endpoint flexible transfers for load balancing. Once it makes network-aware
placement decisions, Varys can optimize cross-rack write coflows.

High Capacity Networks Full bisection bandwidth topologies [106, 158] do not imply
contention-free networks. In the presence of skewed data and hotspot distributions [63], managing
edge bandwidth is still necessary. Inter-coflow scheduling improves performance and predictability
even in these high capacity networks.

Traffic Reduction Techniques Data locality [77], both disk [40,207] and memory [39], reduces
network usage only during reads. The amount of network usage due to intermediate data communi-
cation can be reduced by pushing filters toward the sources [30,111]. Our approach is complemen-
tary; i.e., it can be applied to whatever data traverses the network after applying those techniques.

Network Sharing Among Tenants Fair sharing of network resources between multiple tenants
has received considerable attention [46, 171, 184, 202]. Our work is complementary; we focus on
optimizing performance of concurrent coflows within a single administrative domain, instead of
achieving fairness among competing entities. Moreover, we focus on performance and predictabil-
ity as opposed to fairness.

Concurrent Open Shop Scheduling Inter-coflow scheduling has its roots in the concurrent open
shop scheduling problem [180], which is strongly NP-hard for even two machines. Even in the of-
fline scenario, the best known result is a 2-approximation algorithm [149], and it is inapproximable
within a factor strictly less than 6

5
if P 6=NP [149]. Our setting is different as follows. First, machines

are not independent; i.e., links are coupled because each flow involves a source and a destination.
Second, jobs are not known a priori; i.e., coflows arrive in an online fashion.

CHAPTER 5. CLAIRVOYANT INTER-COFLOW SCHEDULING 71

5.10 Summary
In this chapter, we have implemented clairvoyant coflows – i.e., when a coflow’s structure is known
upon its arrival – in a system called Varys and introduced and analyzed the concurrent open shop
scheduling with coupled resources problem. To minimize coflow completion times (CCT), we
proposed the SEBF heuristic to schedule coflows and the MADD algorithm to allocate bandwidth
to their flows. Together, they decrease the average CCT without starving any coflow and maintain
high network utilization. Through EC2 deployments and trace-driven simulations, we showed that
Varys outperforms per-flow mechanisms and non-preemptive coflow schedulers by more than 3×.
Furthermore, by applying MADD in conjunction with admission control, Varys allowed up to 2×
more coflows to meet their deadlines in comparison to per-flow schemes.

Clairvoyant inter-coflow scheduling, however, is only a first step in understanding the possibil-
ities of coflows in improving communication performance in shared clusters. It raises a variety of
exciting research questions – including how to schedule without knowing flow sizes, what is fair
among coflows, how to avoid/decrease coordination overheads, and how to handle coflow depen-
dencies – that we address in subsequent chapters.

72

Chapter 6

Non-Clairvoyant Inter-Coflow Scheduling

In the previous chapter, we showed how to efficiently schedule clairvoyant coflows – i.e., coflows
without any dynamic changes once they have started – in a shared cluster. In this chapter, we
focus on approximating similar gains even when coflow characteristics are not known a priori
and can change over time. By focusing on non-clairvoyant inter-coflow scheduling, we extend the
applicability of the coflow abstraction to a wider variety of distributed data-parallel applications
and to unforeseen network-, cluster-, and application-level dynamics.

The remainder of this chapter is organized as follows. The next section covers the state-of-the-
art in optimizing communication performance of coexisting distributed data-parallel applications
when communication characteristics are not known a priori. Section 6.2 outlines our proposal,
which we have implemented in a system called Aalo, followed by the challenges and potential
gains from non-clairvoyant inter-coflow scheduling in Section 6.3. Section 6.4 presents a system-
level overview of Aalo, and in Section 6.5, we present the non-clairvoyant scheduling algorithm.
Next, we extend our proposal to support coflow dependencies in Section 6.6 and present Aalo’s
implementation details in Section 6.7. We then evaluate Aalo’s performance in Section 6.8 through
deployments and simulations. Next, we discuss in Section 6.9 its current limitations and future re-
search directions, survey related work in Section 6.10, and summarize our findings in Section 6.11.

6.1 Background
Inter-coflow scheduling to minimize the average coflow completion time (CCT) is NP-hard [68].
Existing FIFO-based solutions, e.g., Baraat [82] and Orchestra [67], compromise on performance
by multiplexing coflows to avoid head-of-line blocking. Varys [68] improves performance using
heuristics such as smallest-bottleneck-first and smallest-total-size-first, but it assumes complete
prior knowledge of coflow characteristics such as the number of flows, their sizes, and endpoints.

Unfortunately, in many cases, coflow characteristics are unknown a priori. Multi-stage jobs
use pipelining between successive computation stages [9, 73, 119, 181] – i.e., data is transferred as
soon as it is generated – making it hard to know the size of each flow. Moreover, a single stage may

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 73

consist of multiple waves [39],1 preventing all flows within a coflow from starting together. Finally,
task failures and speculation [77,119,208] result in redundant flows; meaning, the exact number of
flows or their endpoints cannot be determined until a coflow has completed. Consequently, coflow
schedulers that rely on prior knowledge remain inapplicable to a large number of use cases.

In this chapter, we present a coordinated inter-coflow scheduler – called Coflow-Aware Least-
Attained Service (CLAS) – to minimize the average CCT without any prior knowledge of coflow
characteristics.

6.2 Solution Outline
CLAS generalizes the classic least-attained service (LAS) scheduling discipline [176] to coflows.
However, instead of independently considering the number of bytes sent by each flow, CLAS takes
into account the total number of bytes sent by all the flows of a coflow. In particular, CLAS assigns
each coflow a priority that is decreasing in the total number of bytes the coflow has already sent.
As a result, smaller coflows have higher priorities than larger ones, which helps in reducing the
average CCT. Note that for heavy-tailed distributions of coflow sizes, CLAS approximates the
smallest-total-size-first heuristic,2 which we have been shown to work well for realistic workloads
in the previous chapter.

For light-tailed distributions of coflow sizes, however, a straightforward implementation of
CLAS can lead to fine-grained sharing,3 which is known to be suboptimal for minimizing the
average CCT [67, 68, 82]. The optimal schedule in such cases is FIFO [82].

We address this dilemma by discretizing coflow priorities. Instead of decreasing a coflow’s
priority based on every byte it sends, we decrease its priority only when the number of bytes it
has sent exceeds some predefined thresholds. We refer to this discipline as Discretized CLAS, or
D-CLAS for short. In particular, we use exponentially-spaced thresholds, where the ith threshold
equals bi, (b > 1).

We implement D-CLAS using a multi-level scheduler, where each queue maintains all the
coflows with the same priority. Within each queue, coflows follow the FIFO order. Across queues,
we use weighted fair queuing at the coflow granularity, where weights are based on the queues’ pri-
orities. Using weighted sharing, instead of strict priorities, avoids starvation because each queue is
guaranteed to receive some non-zero service. By approximating FIFO (as in Baraat [82]) for light-
tailed coflows and smallest-coflow-first (as in Varys [68]) for heavy-tailed coflows, the proposed
scheduler works well in practice.

We have implemented D-CLAS in Aalo,4 a system that supports coflow dependencies and
pipelines, and works well in presence of cluster dynamics such as multi-wave scheduling. Aalo

1A wave is defined as the set of parallel tasks from the same stage of a job that have been scheduled together.
2Under the heavy-tailed distribution assumption, the number of bytes already sent is a good predictor of the actual

coflow size [159].
3Consider two identical coflows, CA and CB , that start at the same time. As soon as we send data from coflow CA,

its priority will decrease, and we will have to schedule coflow CB . Thus, both coflows will continuously be interleaved
and will finish roughly at the same time – both taking twice as much time as a single coflow in isolation.

4In Bangla, Aalo (pronounced \'ä-lō\) means light.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 74

requires no prior knowledge of coflow characteristics, e.g., coflow size, number of flows in the
coflow, or its endpoints. While Aalo needs to track the total number of bytes sent by a coflow to
update its priority,5 this requires only loose coordination as priority thresholds are coarse. More-
over, coflows whose total sizes are smaller than the first priority threshold require no coordination.
Aalo runs without any changes to the network or user jobs, and data-parallel applications require
minimal changes to use it (§6.7).

We deployed Aalo on a 100-machine EC2 cluster and evaluated it by replaying production
traces from Facebook and with TPC-DS [25] queries. Aalo improved CCTs both on average (up
to 2.25×) and at high percentiles (2.93× at the 95th percentile) w.r.t. per-flow fair sharing, which
decreased corresponding job completion times. Aalo’s average improvements were within 12% of
Varys for single-stage, single-wave coflows, and it outperformed Varys for multi-stage, multi-wave
coflows by up to 3.7× by removing artificial barriers and through dependency-aware scheduling.
In trace-driven simulations, we found Aalo to perform 2.7× better than per-flow fair sharing and
up to 16× better than fully decentralized solutions that suffer significantly due to the lack of co-
ordination. Simulations show that Aalo performs well across a wide range of parameter space and
coflow distributions.

6.3 Motivation
Before presenting our design, it is important to understand the challenges and opportunities in
non-clairvoyant coflow scheduling for data-parallel directed acyclic graphs (DAGs).

6.3.1 Challenges
An efficient non-clairvoyant [156] coflow scheduler must address two primary challenges:

1. Scheduling Without Complete Knowledge: Without a priori knowledge of coflows, heuris-
tics such as smallest-bottleneck-first [68] are inapplicable – one cannot schedule coflows
based on unknown bottlenecks. Worse, redundant flows from restarted and speculative tasks
unpredictably affect a coflow’s structure and bottlenecks. While FIFO-based schedulers (e.g.,
FIFO-LM in Baraat [82]) do not need complete knowledge, they multiplex to avoid head-of-
line blocking, losing performance.

2. Need for Coordination: Coordination is the key to performance in coflow scheduling. We
show analytically (Theorem C.1.1) and empirically (§6.8.2, §6.8.6) that fully decentralized
schedulers such as Baraat [82] can perform poorly in data-parallel clusters because local-
only observations are poor indicators of CCTs of large coflows. Fully centralized solutions
such as Varys [68], on the contrary, introduce high overheads for small coflows.

5As stated by Theorem C.1.1 in Appendix C.1, any coflow scheduler’s performance can drop dramatically in the
absence of coordination.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 75

1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

3!

2! 4!

Arrival
Time!

C1! 0!

C2! 1!

C3! 0!

3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time! 3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time!

C1! C2! C3!

Coflow Arrival Time! 0! 1! 0!

3!

(a) Datacenter fabric

1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

3!

2! 4!

Arrival
Time!

C1! 0!

C2! 1!

C3! 0!

3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time! 3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time!

C1! C2! C3!

Coflow Arrival Time! 0! 1! 0!

3!

(b) Coflow arrival times

3!
1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

3!

2! 4!

Arrival
Time!

C1! 0!

C2! 1!

C3! 0!

3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time! 3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time!

C1! C2! C3!

Arrival Time! 0! 1! 0!

(c) Per-flow fairness

3!
1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

3!

2! 4!

Arrival
Time!

C1! 0!

C2! 1!

C3! 0!

3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time! 3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time!

C1! C2! C3!

Arrival Time! 0! 1! 0!

(d) Decentralized LAS

3!
1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

3!

2! 4!

Arrival
Time!

C1! 0!

C2! 1!

C3! 0!

3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time! 3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time!

C1! C2! C3!

Arrival Time! 0! 1! 0!

(e) CLAS

3!
1!

2!

3!

1!

2!

3!

Ingress Ports!
(Machine Uplinks)!

Egress Ports!
(Machine Downlinks)!

DC Fabric!

3!

2! 4!

Arrival
Time!

C1! 0!

C2! 1!

C3! 0!

3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time! 3! 6!

P2!

P1!

Time!

3! 6!

P2!

P1!

Time!

C1! C2! C3!

Arrival Time! 0! 1! 0!

(f) The optimal schedule

Figure 6.1: Online coflow scheduling over a 3 × 3 datacenter fabric with three ingress/egress
ports (a). Flows in ingress ports are organized by destinations and color-coded by coflows – C1

in orange/light, C2 in blue/dark, and C3 in black. Coflows arrive online over time (b). Assuming
each port can transfer one unit of data in one time unit, (c)–(f) depict the allocations of ingress
port capacities (vertical axis) for different mechanisms: The average CCT for (c) per-flow fairness
is 5.33 time units; (d) decentralized LAS is 5 time units; (e) CLAS with instant coordination is 4
time units; and (f) the optimal schedule is 3.67 time units.

6.3.2 Potential Gains
Given the advantages of coflow scheduling and the inability of clairvoyant schedulers to support
dynamic coflow modifications and dependencies, a loosely-coordinated non-clairvoyant coflow
scheduler can strike a balance between performance and flexibility.

Consider the example in Figure 6.1 that compares three non-clairvoyant mechanisms against
the optimal clairvoyant schedule. Per-flow fair sharing (Figure 6.1c) ensures max-min fairness
in each link, but it suffers by ignoring coflows [67, 68]. Applying least-attained service (LAS)
[45, 162, 176] in a decentralized manner (Figure 6.1d) does not help, because local observations
cannot predict a coflow’s actual size – e.g., it shares P1 equally between C1 and C3, being obliv-
ious to C1’s flow in P2. The FIFO-LM schedule [82] would be at least as bad. Taking the total
size of coflows into account through global coordination significantly decreases the average CCT
(Figure 6.1e). The optimal solution (Figure 6.1f) exploits complete knowledge for the minimum
average CCT. The FIFO schedule [67] would have resulted in a lower average CCT (4.67 time
units) than decentralized LAS if C3 was scheduled before C1, and it would have been the same if
C1 was scheduled before C3.

This example considers only single-stage coflows without egress contention. Coordinated
coflow scheduling can be even more effective in both scenarios.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 76

Local Daemon

Local Daemon

milliseconds

Local Daemon
D-CLAS

Sender1

Sender2 μs

Network Interface
Timescale

Local/Global Scheduling

Coordinator

Figure 6.2: Aalo architecture. Computation frameworks interact with their local Aalo daemons
using a client library, and the daemons periodically coordinate to determine the global ordering of
coflows.

6.4 Aalo Overview
Aalo uses a non-clairvoyant coflow scheduler that optimizes the communication performance of
data-intensive applications without a priori knowledge, while being resilient to the dynamics of job
schedulers and data-parallel clusters. This section briefly overviews Aalo to help the reader follow
the analysis and design of its scheduling algorithms (§6.5), mechanisms to handle dynamic events
(§6.6), and design details (§6.7) presented in subsequent sections.

6.4.1 Problem Statement
Our goal is dynamically prioritizing coflows without prior knowledge of their characteristics while
respecting coflow dependencies. This problem – non-clairvoyant coflow scheduling with prece-
dence constraints – is NP-hard, because coflow scheduling with complete knowledge is NP-hard
too [68]. In addition to minimizing CCTs, we must guarantee starvation freedom and work conser-
vation.

6.4.2 Architectural Overview
Aalo uses a loosely-coordinated architecture (Figure 6.2), because full decentralization can render
coflow scheduling pointless (Theorem C.1.1). It implements global and local controls at two time
granularities:

• Long-Term Global Coordination: Aalo daemons send locally-observed coflow sizes to a
central coordinator every O(10) milliseconds. The coordinator determines the global coflow
ordering using the D-CLAS framework (§6.5) and periodically sends out the updated sched-
ule and globally-observed coflow sizes to all the daemons.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 77

• Short-Term Local Prioritization: Each daemon schedules coflows using the last-known
global information. In between resynchronization, newly-arrived coflows are enqueued in
the highest-priority queue. While flows from new and likely to be small6 coflows receive
high priority in the short term, Aalo daemons realign themselves with the global schedule
as soon as updated information arrives. A flow that has just completed is replaced with a
same-destination flow from the next coflow in the schedule for work conservation.

Frameworks use a client library to interact with the coordinator over the network to de-
fine coflows and their dependencies (§6.7). To send data, they must use the Aalo-provided
OutputStream. The coordinator has an ID generator that creates unique CoflowIds while taking
coflow dependencies into account (§6.6.1).

We have implemented Aalo in the application layer without any changes or support from the
underlying network. We have deployed it in the cloud, and it performs well even for sub-second
jobs (§6.8).

Fault Tolerance Aalo handles three failure scenarios that include its own failures and that of the
clients using it. First, failure of a Aalo daemon does not hamper job execution, since the client
library automatically falls back to regular TCP fair sharing until the daemon is restarted. Upon
restart, the daemon remains in inconsistent state only until the next coordination step. Second,
when the coordinator fails, client libraries keep track of locally-observed size until it has been
restarted, while periodically trying to reconnect. Finally, in case of task failures and consequent
restarts, relevant flows are restarted by corresponding job schedulers. Such flows are treated similar
to a new wave in a coflow, and their additional traffic is added up to the current size of that coflow.

Scalability The faster Aalo daemons can coordinate, the better it performs. The number of co-
ordination messages is linear with the number of daemons and independent of coflows. It is not
a bottleneck for clusters with O(100) machines, and our evaluation suggests that Aalo can scale
up to O(10, 000) machines with minimal performance loss (§6.8.6). Most coflows are small and
scheduled through local decisions; hence, unlike Varys, Aalo handles tiny coflows well.

6.5 Scheduling Without Prior Knowledge
In this section, we present an efficient coflow scheduler for minimizing CCTs without a priori infor-
mation. First, we discuss the complexity and requirements of such a scheduler. Next, we describe a
priority discretization framework that we use to discuss the tradeoffs in designing an efficient, non-
clairvoyant scheduler. Based on our understanding, we develop discretized Coflow-Aware Least-
Attained Service (D-CLAS) – a mechanism to prioritize coflows and a set of policies to schedule
them without starvation. Finally, we compare our proposal with existing coflow schedulers.

6For data-intensive applications, 60% (85%) coflows are less than 100 MB (1 GB) in total size. Appendix A has
the detailed distributions.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 78

For brevity of exposition, we present the mechanisms in the context of single-stage, single-
wave coflows. We extend them to handle multi-stage, multi-wave coflows as well as task failures
and speculation in Section 6.6.

6.5.1 Complexity and Desirable Properties
The offline coflow scheduling problem – i.e., when all coflows arrive together and their character-
istics are known a priori – is NP-hard [68]. Consequently, the non-clairvoyant coflow scheduling
problem is NP-hard as well.

In the non-clairvoyant setting, smallest-bottleneck-first [68] – the best-performing clairvoyant
heuristic – becomes inapplicable. This is because the bottleneck of a coflow is revealed only after
it has completed. Instead, one must schedule coflows based on an attribute that

1. can approximate its clairvoyant counterpart using current observations, and

2. involves all the flows to avoid the drawbacks from the lack of coordination (Theorem C.1.1).

Note that a coflow’s bottleneck can change over time and due to task failures and restarts, failing
the first requirement.

In addition to minimizing the average CCT, the non-clairvoyant scheduler must ensure the
following.

1. Guarantee starvation freedom for bounded CCTs;

2. Ensure work conservation to increase utilization; and

3. Decrease coordination requirements for scalability.

Coflow-Aware Least-Attained Service (CLAS) Although the smallest-total-size-first heuristic
had been shown to perform marginally worse (1.14×) than smallest-bottleneck-first in the clair-
voyant setting [68], it becomes a viable option in the non-clairvoyant case. The current size of a
coflow – i.e., how much it has already sent throughout the entire cluster – meets both criteria. This
is because unlike a coflow’s bottleneck, it monotonically increases with each flow regardless of
start time or endpoints. As a result, setting a coflow’s priority that decreases with it’s current size
can ensure that smaller coflows finish faster, which, in turn, minimizes the average CCT. Further-
more, it is a good indicator of actual size [159], because coflow size typically follows heavy-tailed
distribution [39, 68].

We refer to this scheme as Coordinated or Coflow-Aware Least-Attained Service (CLAS). Note
that CLAS reduces to the well-known Least-Attained Service (LAS) [162, 176] scheduling disci-
pline in the case of a single link.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 79

6.5.2 Priority Discretization
Unfortunately, using continuous priorities derived from coflow sizes can degenerate into fair shar-
ing (§C.2), which increases the average CCT [67,68,82]. Coordination needed to find global coflow
sizes poses an additional challenge. We must be able to preempt at opportune moments to decrease
CCT without requiring excessive coordination.

In the following, we describe a priority discretization framework to eventually design an effi-
cient, non-clairvoyant coflow scheduler. Unlike classic non-clairvoyant schedulers – least-attained
service (LAS) in single links [162, 176] and multi-level feedback queues (MLFQ) in operating
systems [44, 70, 74] – that perform fair sharing in presence of similar flows/tasks to provide inter-
activity, our solution improves the average CCT even in presence of identical coflows.

Multi-Level Coflow Scheduling A multi-level coflow scheduler consists of K queues
(Q1, Q2, . . . , QK), with queue priorities decreasing fromQ1 toQK . The ith queue contains coflows
of size within [Qlo

i , Q
hi
i). Note that Qlo

1 = 0, Qhi
K =∞, and Qlo

i+1 = Qhi
i .

Actions taken during three lifecycle events determine a coflow’s priority.

• Arrival: New coflows enter the highest priority queue Q1 when they start.

• Activity: A coflow is demoted to Qi+1 from Qi, when its size crosses queue threshold Qhi
i .

• Completion: Coflows are removed from their current queues upon completion.

The first two ensure that coflows are prioritized based on their current sizes, while the last is for
completeness.

6.5.3 Tradeoffs in Designing Coflow Schedulers
Given the multi-level framework, a coflow scheduler can be characterized by its information
source, queue structure, and scheduling disciplines at different granularities. Tradeoffs made while
navigating this solution space result in diverse algorithms, ranging from centralized shortest-first
to decentralized FIFO [67, 68, 82] and many in between. We elaborate on the key tradeoffs below.

Information Source There are two primary categories of coflow schedulers: clairvoyant sched-
ulers use a priori information and non-clairvoyant ones do not. Non-clairvoyant schedulers have
one more decision to make: whether to use globally-coordinated coflow sizes or to rely on local in-
formation. The former is accurate but more time consuming. The latter diverges (Theorem C.1.1)
for coflows with large skews, which is common in production clusters [63, 68].

Queue Structure A scheduler must also determine the number of queues it wants to use and
their thresholds. On the one hand, FIFO-derived schemes (e.g., Orchestra, Baraat) use exactly one

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 80

…

0

∞

Highest-Priority
Queue

Lowest-Priority
Queue

QK

Q2

Q1FIFO

FIFO

FIFO

E0Q1
hi

E0Q1
hi

1EQ1
hi

EK-2Q1
hi

Figure 6.3: Discretized Coflow-Aware Least-Attained Service. Consecutive queues hold coflows
with exponentially larger size.

queue.7 FIFO works well when coflows follow light-tailed distributions [82]. Clairvoyant efficient
schedulers (e.g., Varys), on the other hand, can be considered to have as many queues as there are
coflows. They perform the best when coflow sizes are known and are heavy-tailed [68]. At both
extremes, queue thresholds are irrelevant.

For solutions in between, determining an ideal number of queues and corresponding thresholds
is difficult; even for tasks on a single machine, no optimal solution exists [44]. Increasing the
number of levels/queues is appealing, but fine-grained prioritization can collapse to fair sharing
when coflow sizes are unknown and hurt CCTs. More queues also generate more “queue-change”
events and increase coordination requirements.

Scheduling Disciplines Finally, a coflow scheduler must decide on scheduling disciplines at
three different granularities: (i) across queues, (ii) among coflows in each queue, and (iii) among
flows within each coflow. The first is relevant when K > 1, while the second is necessary when
queues have more than one coflow. In the absence of flow size information, size-based rate al-
location algorithms such as MADD cannot be used; max-min fairness similar to TCP is the best
alternative for scheduling individual flows.

6.5.4 Discretized Coflow-Aware Least-Attained Service
We propose Discretized CLAS or D-CLAS that use more than one priority queues, i.e., K > 1, to
enable prioritization. The key challenge, however, is finding a suitable K that provides sufficient
opportunities for preemption, yet small enough to not require excessive coordination.

7Baraat takes advantage of multiple queues in switches to enable multiplexing, but logically all coflows are in the
same queue.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 81

O
rc

he
st

ra
[6

7]
Va

ry
s[

68
]

B
ar

aa
t[

82
]

A
al

o

O
n-

A
rr

iv
al

K
no

w
le

dg
e

C
la

ir
vo

ya
nt

C
la

ir
vo

ya
nt

N
on

-c
la

ir
vo

ya
nt

N
on

-c
la

ir
vo

ya
nt

C
ofl

ow
Si

ze
In

fo
rm

at
io

n
G

lo
ba

l
G

lo
ba

l
L

oc
al

G
lo

ba
lA

pp
ro

x.
N

um
be

r
of

Q
ue

ue
s

(K
)

O
ne

N
um

C
ofl

ow
s

O
ne

lo
g E

(M
ax

Si
ze

)
Q

ue
ue

Th
re

sh
ol

ds
N

/A
E

xa
ct

Si
ze

N
/A

Q
hi i+

1
=
E
×
Q

hi i
Q

ue
ue

Sc
he

du
lin

g
N

/A
St

ri
ct

Pr
io

ri
ty

N
/A

W
ei

gh
te

d
C

ofl
ow

Sc
he

du
lin

g
in

E
ac

h
Q

ue
ue

FI
FO

N
/A

FI
FO

FI
FO

F
lo

w
Sc

he
du

lin
g

W
SS

M
A

D
D

M
ax

-M
in

M
ax

-M
in

W
or

k
C

on
se

rv
at

io
n

N
ex

tC
ofl

ow
N

ex
tQ

ue
ue

N
ex

tC
ofl

ow
W

ei
gh

te
d

A
m

on
g

Q
ue

ue
s

St
ar

va
tio

n
Av

oi
da

nc
e

N
/A

Pr
om

ot
e

to
Q

1
N

/A
N

/A
H

O
L

B
lo

ck
in

g
Av

oi
da

nc
e

M
ul

tip
le

xi
ng

N
/A

M
ul

tip
le

xi
ng

N
/A

Ta
bl

e
6.

1:
Q

ua
lit

at
iv

e
co

m
pa

ri
so

n
of

co
flo

w
sc

he
du

lin
g

al
go

ri
th

m
s.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 82

Pseudocode 4 D-CLAS Scheduler to Minimize CCT
1: procedure RESCHEDULE(Queues Q, ExcessPolicy E(.))
2: while Fabric is not saturated do . Allocate
3: for all i ∈ [1, K] do
4: for all Coflow C ∈ Qi do . Sorted by CoflowId
5: for all Flow f ∈ C do
6: f.rate = Max-min fair share . Fair schedule flows
7: Update Qi.share based on f.rate
8: end for
9: end for

10: Distribute unused Qi.share using E(.) . Work conservation
11: end for
12: end while
13: end procedure

14: procedure D-CLAS
15: W =

∑
Qi.weight

16: for all i ∈ [1, K] do
17: Qi.share = Qi.weight / W . Weighted sharing between queues
18: end for
19: reschedule(Q, Max-Min among Qj 6=i)
20: end procedure

To achieve our goals, each queue in D-CLAS contains exponentially larger coflows than its
immediately higher-priority queue (Figure 6.3). Formally, Qhi

i+1 = E × Qhi
i , where the factor E

determines how much bigger coflows in one queue are from that in another. Consequently, the
number of queues remains small and can be expressed as an E-based logarithmic function of the
maximum coflow size.

The final component in defining our queue structure is determining Qhi
1 . Because global coor-

dination, irrespective of mechanism, has an associated time penalty depending on the scale of the
cluster, we want coflows that are too small to be globally coordinated in Q1. Larger coflows reside
in increasingly more stable, lower-priority queues (Q2, . . . , QK).

While we typically use E = 10 and Qhi
1 = 10 MB in our cluster, simulations show that for

K > 1, a wide range of K,E,Qhi
1 combinations work well (§6.8.5).

Non-Clairvoyant Efficient Schedulers D-CLAS clusters similar coflows together and allows
us to implement different scheduling disciplines among queues and among coflows within each
queue (Pseudocode 4). It uses weighted sharing among queues, where queue weights decrease
with lowered priority; i.e., Qi.weight ≥ Qi+1.weight at line 17 in Pseudocode 4. Excess share

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 83

of any queue is divided among unsaturated queues in proportion to their weights using max-min
fairness (line 19).

Within each queue, it uses FIFO scheduling (line 4) so that coflows can proceed until they
reach queue threshold or complete. Minimizing interleaving between coflows in the same queue
minimizes CCTs, and large coflows are preempted after crossing queue thresholds. Hence, D-
CLAS does not suffer from HOL blocking. As mentioned earlier, without prior knowledge, flows
within each coflow use max-min fairness (line 6).

Starvation Avoidance Given non-zero weights to each queue, all queues are guaranteed to make
progress. Hence, D-CLAS is starvation free. We did not observe any perpetual starvation in our
experiments or simulations either.

6.5.5 Summary
Table 6.1 summarizes the key characteristics of the schedulers discussed in this section. D-CLAS
minimizes the average CCT by prioritizing significantly different coflows across queues and FIFO
ordering similar coflows in the same queue. It does so without starvation, and it approximates FIFO
schedulers for light-tailed and priority schedulers for heavy-tailed coflow distributions.

6.6 Handling Uncertainties
So far we have only considered “ideal” coflows from single-stage, single-wave jobs without task
failures or stragglers. In this section, we remove each of these assumptions and extend the proposed
schedulers to perform well in realistic settings. We start by considering multi-stage dataflow DAGs.
Next, we consider dynamic coflow modifications due to job scheduler events such as multi-wave
scheduling and cluster activities such as restarted and speculative tasks.

6.6.1 Multi-Stage Dataflow DAGs
The primary concern in coflow scheduling in the context of multi-stage jobs [8, 9, 119, 208] is the
divergence of CCT and job completion time. Minimizing CCTs might not always result in faster
jobs – one must carefully handle coflow dependencies within the same DAG (Figure 6.4).

We define a coflow CF to be dependent on another coflow CE if the consumer computation
stage of CE is the producer of CF . Depending on pipelining between successive computation
stages, there can be two types of dependencies.

1. Starts-After (CE 7−→ CF): In presence of explicit barriers [8], CF cannot start until CE has
finished.

2. Finishes-Before (CE −→ CF): With pipelining between successive stages [73,119], CF can
coexist with CE but it cannot finish until CE has finished.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 84

CA! CB! CC!

CD!

CE!

CF!

Input1! Input2! Input3!

Output!

CA! CB! CC!

CD!

CE!

CF!

C42.1! C42.1! C42.1!

C42.2!

C42.3!

C42.4!

(a) Query Plan

CA! CB! CC!

CD!

CE!

CF!

Input1! Input2! Input3!

Output!

CA! CB! CC!

CD!

CE!

CF!

C42.1! C42.1! C42.1!

C42.2!

C42.3!

C42.4!

CY! CZ! CY Finishes-Before CZ!

(b) Dependencies

CA! CB! CC!

CD!

CE!

CF!

Input1! Input2! Input3!

Output!

CA! CB! CC!

CD!

CE!

CF!

C42.1! C42.1! C42.1!

C42.2!

C42.3!

C42.4!

CY! CZ! CY Finishes-Before CZ!

C42.0!

(c) CoflowIDs

Figure 6.4: Coflow dependencies in TPC-DS query-42: (a) Query plan generated by Shark [203];
boxes and arrows respectively represent computation and communication stages. (b) Finishes-
Before relationships between coflows are represented by arrows. (c) CoflowIds assigned by Aalo.

Pseudocode 5 Coflow ID Generation
1: NextCoflowID = 0 . Initialization
2: procedure NEWCOFLOWID(CoflowId pId, Coflows P)
3: if pId == Nil then
4: newId = NextCoflowID++ . Unique external id
5: return newId.0
6: else
7: sId = 1 + max

C∈P
C.sId . Ordered internal id

8: return pId.sId
9: end if

10: end procedure

Note that coflows in different branches of a DAG can be unrelated to each other.
Job schedulers identify coflow dependencies while building query plans (Figure 6.4a). They

can make Aalo aware of these dependencies all at once, or in a coflow-by-coflow basis. Given
coflow dependencies, we want to efficiently schedule them to minimize corresponding job comple-
tion times.

We make two observations about coflow dependencies. First, coflows from the same job should
be treated as a single entity. Second, within each entity, dependent coflows must be deprioritized
during contention. The former ensures that minimizing CCTs directly affect job completion times,
while the latter prevents circular dependencies. For example, all six coflows must complete in
Figure 6.4a, and dependent coflows cannot complete without their parents in Figure 6.4b.

We simultaneously achieve both objectives by encoding the DAG identifier and internal coflow
dependencies in the CoflowId. Specifically, we extend the CoflowId with an internal component in

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 85

addition to its external component (Pseudocode 5). While the external part of a CoflowId uniquely
identifies the DAG it belongs to, the internal part ensures ordering of coflows within the same
DAG (Figure 6.4c). Our schedulers process coflows in each queue in the FIFO order based on their
external components, and they break ties between coflows with the same external component using
their internal CoflowIds (line 4 in Pseudocode 4).

Note that optimal DAG scheduling is NP-hard (§6.10). Our approach is similar to the Critical-
Path Method [132] and resolves dependencies in each branch of a DAG, but it does not provide
any guarantees for the entire DAG.

6.6.2 Dynamic Coflow Modifications
A flow can start only after its source and destination tasks have been scheduled. Tasks of large
jobs are often scheduled in multiple waves depending on cluster capacity [39]. Hence, flows of
such jobs are also created in batches, and waiting for all flows of a stage to start can only halt a job.
Because the number of tasks in each wave can dynamically change, Aalo must react without a priori
knowledge. The same is true for unpredictable cluster events such as failures and stragglers. Both
result in restart or replication of some tasks and corresponding flows, and Aalo must efficiently
handle them as well.

Aalo can handle all three events without any changes to its schedulers. As long as flows use the
appropriate CoflowId, how much a coflow has sent always increases regardless of multiple waves
and tasks being restarted or replicated.

6.7 Design Details
We have implemented Aalo in about 4, 000 lines of Scala code that provides a pipelined coflow
API and implements the proposed schedulers.

6.7.1 Pipelined Coflow API
Aalo provides a simple coflow API that requires just replacing OutputStreams with
AaloOutputStream. Any InputStream can be used in conjunction with AaloOutputStream.
It also provides two additional methods for coflow creation and completion – register() and
unregister(), respectively.

The InputStream-AaloOutputStream combination is non-blocking. Meaning, there is no
artificial barrier after a coflow, and senders (receivers) start sending (receiving) without blocking.
As they send (receive) more bytes, Aalo observes their total size, perform efficient coflow schedul-
ing, and throttles when required. Consequently, small coflows proceed in the FIFO order without
coordination overhead. The entire process is transparent to applications.

Usage Example Any sender can use coflows by wrapping its OutputStream with
AaloOutputStream.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 86

For example, for a shuffle to use Aalo, the driver first registers it to receive a unique CoflowId.

val sId = register()

Note that the driver does not need to define the number of flows before a coflow starts.
Later, each mapper must use AaloOutputStream for sending data. One mapper can create

multiple AaloOutputStream instances, one for each reducer connection (i.e., socket sock), in
concurrent threads.

val out = new AaloOutputStream(sock, sId)

Reducers can use any InputStream instances to receive their inputs. They can also overlap
subsequent computation with data reception instead of waiting for the entire input. Once all reduc-
ers complete, the driver terminates the shuffle.

unregister(sId)

Defining Dependencies Coflows can specify their parent(s) during registration, and Aalo uses
this information to generate CoflowIds (Pseudocode 5). In our running example, if the shuffle (sId)
depended on an earlier broadcast (bId) – common in many Spark [208] jobs – the driver would
have defined bId as a dependency during registration as follows.

val sId = register({bId})

sId and bId will share the same external CoflowId, but sId will have lower priority if it contends
with bId.

6.7.2 Coflow Scheduling in Aalo
Aalo daemons resynchronize every ∆ milliseconds. Each daemon sends the locally-observed
coflow sizes to the coordinator every ∆ interval. Similarly, the coordinator sends out the globally-
coordinated coflow order and corresponding sizes every ∆ interval. Furthermore, the coordinator
sends out explicit ON/OFF signals for individual flows in order to avoid receiver-side contentions
and to expedite sender-receiver rate convergence.

In between updates, daemons make decisions based on current knowledge, which can be off
by at most ∆ milliseconds from the global information. Because traffic-generating coflows are
large, daemons are almost always in sync about their order; only tiny coflows are handled by local
decisions to avoid synchronization overheads.

Choice of ∆ Aalo daemons are more closely in sync as ∆ decreases. We suggest ∆ to be O(10)
milliseconds, and our evaluation shows that a 100-machine EC2 cluster can resynchronize within
8 milliseconds on average (§6.8.6).

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 87

Shuffle Duration < 25% 25–49% 50–74% ≥ 75%

% of Jobs 61% 13% 14% 12%

Table 6.2: Jobs binned by time spent in communication.

6.8 Evaluation
We evaluated Aalo through a series of experiments on 100-machine EC2 [3] clusters using traces
from production clusters and an industrial benchmark. For larger-scale evaluations, we used a
trace-driven simulator that performs a detailed replay of task logs. The highlights are:

• For communication-dominated jobs, Aalo improves the average (95th percentile) CCT and
job completion time by up to 2.25× (2.93×) and 1.57× (1.77×), respectively, over per-flow
fairness. Aalo improvements are, on average, within 12% of Varys (§6.8.2).

• As suggested by our analysis, coordination is the key to performance – independent local
decisions (e.g., in [82]) can lead to more than 16× performance loss (§6.8.2).

• Aalo outperforms per-flow fairness and Varys for multi-wave (§6.8.3) and DAG (§6.8.4)
workloads by up to 3.7×.

• Aalo’s improvements are stable over a wide range of parameter combinations for any K ≥ 2
(§6.8.5).

• Aalo coordinator can scale to O(10, 000) daemons with minimal performance loss (§6.8.6).

6.8.1 Methodology
Workload Our workload is based on a Hive/MapReduce trace collected by Chowdhury et al. [68,
Figure 4] from a 3000-machine, 150-rack Facebook cluster. The original cluster had a 10 : 1 core-
to-rack oversubscription ratio and a total bisection bandwidth of 300 Gbps. We scale down jobs
accordingly to match the maximum possible 100 Gbps bisection bandwidth of our deployment
while preserving their communication characteristics.

Additionally, we use TPC-DS [25] queries from the Cloudera benchmark [17, 26] to evaluate
Aalo on DAG workloads. The query plans were generated using Shark [203].

Job/Coflow Bins We present our results by categorizing jobs based on their time spent in com-
munication (Table 6.2) and by distinguishing coflows based on their lengths and widths (Table 6.3).
Specifically, we consider a coflow to be short if its longest flow is less than 5 MB and narrow if
it has at most 50 flows. Note that coflow sizes, similar to jobs, follow heavy-tailed distributions in
data-intensive clusters [68].

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 88

Coflow Bin 1 (SN) 2 (LN) 3 (SW) 4 (LW)

% of Coflows 52% 16% 15% 17%

% of Bytes 0.01% 0.67% 0.22% 99.10%

Table 6.3: Coflows binned by length (Short and Long) and width (Narrow and Wide).

Cluster Our experiments use extra-large high-memory (m2.4xlarge) EC2 instances. We ob-
served bandwidths close to 900 Mbps per machine on clusters of 100 machines. We use a compute
engine similar to Spark [208] that uses the coflow API (§6.7.1) and use ∆ = 10 milliseconds,
E = K = 10, and Qhi

1 = 10 MB as defaults.

Simulator For larger-scale evaluation, we use a trace-driven flow-level simulator that performs
a detailed task-level replay of the Facebook trace. It preserves input-to-output ratios of tasks, lo-
cality constraints, and inter-arrival times between jobs and runs at 10s decision intervals for faster
completion.

Metrics Our primary metric for comparison is the improvement in average completion times of
coflows and jobs (when its last task finished) in the workload. We measure it as the completion
time of a scheme normalized by Aalo’s completion time; i.e.,

Normalized Comp. Time =
Compared Duration

Aalo’s Duration

If the normalized completion time of a scheme is greater (smaller) than one, Aalo is faster (slower).
We contrast Aalo with TCP fair sharing and the open-source8 implementation of Varys that

uses a clairvoyant, smallest-bottleneck-first scheduler. Due to the lack of readily-deployable im-
plementations of Baraat [82], we compare against it only in simulation. We present Aalo’s results
for D-CLAS with Qi.weight = K − i+ 1.

6.8.2 Aalo’s Overall Improvements
Figure 6.5a shows that Aalo reduced the average and 95th percentile completion times of
communication-dominated jobs by up to 1.57× and 1.77×, respectively, in EC2 experiments in
comparison to TCP-based per-flow fairness. Corresponding improvements in the average CCT
(CommTime) were up to 2.25× and 2.93× (Figure 6.5b). As expected, jobs become increasingly
faster as their time spent in communication increase. Across all bins, the average end-to-end com-
pletion times improved by 1.18× and the average CCT improved by 1.93×; corresponding 95th
percentile improvements were 1.06× and 3.59×.

Varying improvements in the average CCT across bins in Figure 6.5b are not correlated, as it
depends more on coflow characteristics than that of jobs. Figure 6.6 shows that Aalo improved the

8https://github.com/coflow

https://github.com/coflow

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 89

0!
1!
2!
3!
4!
5!
6!

<25%! 25-49%! 50-74%! >=75%! All Jobs!N
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. A
al

o!

Perc. of Job Duration Spent in Communication!

Per-Flow Fairness (Avg)! Per-Flow Fairness (95th)!
Varys (Avg)! Varys (95th)!

EC2$E2E$Improv+

(a) Improvements in job completion times

EC2$Comm$Improv+

0!
1!
2!
3!
4!
5!
6!

<25%! 25-49%! 50-74%! >=75%! All Jobs!N
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. A
al

o!

Perc. of Job Duration Spent in Communication!

Per-Flow Fairness (Avg)! Per-Flow Fairness (95th)!
Varys (Avg)! Varys (95th)!

(b) Improvements in time spent in communication

Figure 6.5: [EC2] Average and 95th percentile improvements in job and communication comple-
tion times using Aalo over per-flow fairness and Varys.

EC2$Coflow$Improv-

0!
1!
2!
3!
4!
5!
6!

Bin 1! Bin 2! Bin 3! Bin 4! ALL!N
or

m
al

iz
ed

 C
om

p.
 T

im
e

w.
r.t

. A
al

o!

Coflow Types!

Per-Flow Fairness (Avg)! Per-Flow Fairness (95th)!
Varys (Avg)! Varys (95th)!

Figure 6.6: [EC2] Improvements in the average and 95th percentile CCTs using Aalo over per-flow
fairness and Varys.

average CCT over per-flow fair sharing regardless of coflow width and length distributions. We
observe more improvements in bin-2 and bin-4 over bin-1 and bin-3, respectively, because longer
coflows give Aalo more opportunities for better estimation.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 90

0!

0.5!

1!

0.01! 0.1! 1! 10! 100! 1000!

Fr
ac

tio
n

of
 C

ofl
ow

s!

Coflow Completion Time (Seconds)!

Varys!
Non-Clairvoyant Scheduler!
Per-Flow Fairness!

Figure 6.7: [EC2] CCT distributions for Aalo, Varys, and per-flow fairness mechanism. The X-axis
is in log scale.

Finally, Figure 6.7 presents comparative CDFs of CCTs for all coflows. Across a wide range
of coflow durations – milliseconds to hours – Aalo matches or outperforms TCP fair sharing. As
mentioned earlier, Aalo’s advantages keep increasing with longer coflows.

What About Clairvoyant Coflow Schedulers? To understand how far we are from clairvoyant
solutions, we have compared Aalo against Varys, which uses complete knowledge of a coflow’s
individual flows. Figure 6.5 shows that across all jobs, the average job and coflow completion
times using Aalo stay within 12% of Varys. At worst, Aalo is 1.43× worse than Varys for 12% of
the jobs.

Figure 6.6 presents a clearer picture of where Aalo is performing worse. For the largest coflows
in bin-4 – sources of almost all the bytes – Aalo performs the same as Varys; it is only for the
smaller coflows, especially the short ones in bin-1 and bin-3, Aalo suffers from its lack of foresight.

However, it still does not explain why Varys performs so much better than Aalo for coflows
of durations between 200ms to 30s (Figure 6.7) given that ∆ is only 10ms! Closer examination
revealed this to be an isolation issue [138, 171]: Varys delays large coflows in presence of small
ones and uses explicit rates for each flow. Because Aalo cannot explicitly control rates without a
priori information, interference between coflows with few flows with very large coflows results in
performance loss. Reliance on slow-to-react TCP for flow-level scheduling worsens the impact.
We confirmed this by performing width-bounded experiments – we reduced the number of flows
by 10× while keeping same coflow sizes; this reduced the gap between the two CDFs from ≤ 6×
to ≤ 2× in the worst case.

Scheduling Overheads Because coflows smaller than the first priority threshold are scheduled
without coordination, Aalo easily outperforms Varys for sub-200ms coflows (Figure 6.7). For
larger coflows, Aalo’s average and 99th percentile coordination overheads were 8ms and 19ms,
respectively, in our 100-machine cluster – an order of magnitude smaller than Varys due to Aalo’
loose coordination requirements. Almost all of it were spent in communicating coordinated de-
cisions. Impact of scheduling overheads on Aalo’s performance is minimal, even at much larger
scales (§6.8.6).

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 91

7.
24 9.
15

1.
52 2.
46

2.
70

1.
51

1.
10

0.
86 1.
28

1.
25

27
.8

2

19
.5

8

8.
95

16
.0

3

15
.8

0

20
.8

9

34
.2

6

13
.4

7

18
.2

7

18
.6

0

0

10

20

30

40

50

Bin 1 Bin 2 Bin 3 Bin 4 ALLN
or

m
al

iz
ed

 C
om

p.
 T

im
e

Coflow Types

Per-Flow Fairness
Varys
Uncoordinated Non-Clairvoyant
FIFO-LM

Figure 6.8: [Simulation] Average improvements in CCTs using Aalo. 95th percentile results are
similar.

Trace-Driven Simulation

We compared Aalo against per-flow fairness, Varys, and non-clairvoyant scheduling without co-
ordination in simulations (Figure 6.8). Similar to EC2 experiments, Aalo outperformed flow-level
fairness with average and 95th percentile improvements being 2.7× and 2.18×.

Figure 6.8 shows that Aalo outperforms Varys in most bins in the absence of coordination
overheads. However, a closer observation reveals that Varys performed better than Aalo for coflows
longer than 1.5 seconds except for at the 99th percentile (Figure 6.9).

What About Aalo Without Coordination? Given that Aalo takes few milliseconds to coordi-
nate, we need to understand the importance of coordination. Simulations show that coflow schedul-
ing without coordination can be significantly worse than even simple TCP fair sharing. On average,
Aalo performed 15.8× better than its uncoordinated counterpart, bolstering our worst-case analysis
(Theorem C.1.1). Experiments with increasing ∆ suggest the same (§6.8.6).

What About FIFO with Limited Multiplexing in Baraat [82]? We found that FIFO-LM can
be significantly worse than Aalo (18.6×) due to its lack of coordination: each switch takes locally-
correct, but globally-inconsistent, scheduling decisions. Fair sharing among heavy coflows further
worsens it. We had been careful – as the authors in [82] have pointed out – to select the threshold
that each switch uses to consider a coflow heavy. Figure 6.8 shows the results for FIFO-LM’s
threshold set at the 80th percentile of the coflow size distribution; results for the threshold set to
the 20th, 40th, 60th, 70th, and 90th percentiles were worse. Aalo and FIFO-LM performs similar
for small coflows following light-tailed distributions (not shown).

6.8.3 Impact of Runtime Dynamics
So far we have only considered static coflows, where all flows of a coflow start together. However,
operational events such as multi-wave scheduling, task failures, and speculative execution can
dynamically change a coflow’s structure in the runtime (§6.6.2). Because of their logical similarity

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 92

0

1

0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Coflow Completion Time (Seconds)

Varys
Non-Clairvoyant Scheduler
Per-Flow Fairness
Uncoordinated Non-Clairvoyant

(a) CDF

0.01

0.1

1
0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Coflow Completion Time (Seconds)

(b) CCDF

Figure 6.9: [Simulation] CCT distributions for Aalo, Varys, per-flow fairness, and uncoordinated
non-clairvoyant coflow scheduling. Both X-axes and the Y-axis of (b) are in log scale.

Number of Waves in Coflow 1 2 3 4

Max Waves = 1 100%

Max Waves = 2 90% 10%

Max Waves = 4 81% 9% 4% 6%

Table 6.4: Coflows binned by the number of waves.

– i.e., tasks start in batches and the number of active flows cannot be known a priori – we focus
only on the multi-wave case.

The number of waves in a stage depends on the number of senders (e.g., mappers in MapRe-
duce) [39]. In these experiments, we used the same coflow mix as the original trace but varied
the maximum number of concurrent senders in each wave while keeping all the receivers active,
essentially fixing the maximum number of waves in each coflow. Table 6.4 shows the fraction of
coflows with different number of waves; e.g., all coflows had exactly one wave in Section 6.8.2.

Figure 6.10 shows the importance of leveraging coflow relationships across waves. As the num-
ber of multi-wave coflows increased, Aalo moved from trailing Varys by 0.94× to outperforming

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 93

55
.8

6!

0!

6!

12!

Bin 1! Bin 2! Bin 3! Bin 4! ALL!N
or

m
. C

om
p.

 T
im

e
w.

r.t
. A

al
o!

Coflow Types!

Maximum Waves = 1!
Maximum Waves = 2!
Maximum Waves = 4!

EC2$Coflow$Mul+Wave0

1!
0!

Figure 6.10: [EC2] Average improvements in CCTs w.r.t. Varys for multi-wave coflows.

EC2$DAG(

0!
1!
2!
3!
4!
5!

q1
9

(7
)!

q2
7

(6
)!

q3
 (4

)!
q3

4
(6

)!
q4

2
(4

)!
q4

3
(4

)!
q4

6
(8

)!
q5

2
(4

)!
q5

3
(5

)!
q5

5
(4

)!
q5

9
(6

)!
q6

3
(5

)!
q6

5
(5

)!
q6

8
(8

)!
q7

 (6
)!

q7
3

(5
)!

q7
9

(6
)!

q8
9

(5
)!

q9
8

(1
)!

ss
_m

ax
 (1

)!
O

ve
ra

ll
(5

)!

N
or

m
. C

om
p.

 T
im

e!

TPC-DS Query ID (Critical Path Len Among Coflows)!

Per-Flow Fairness!
Varys!

0!
1!
2!
3!
4!
5!

N
or

m
. C

om
p.

 T
im

e
w.

r.t
. A

al
o!

TPC-DS Query ID (Critical Path Length in the Coflow DAG)!

Per-Flow Fairness! Varys!

Figure 6.11: [EC2] Improvements in job-level communication times using Aalo for coflow DAGS
in the Cloudera benchmark.

it by 1.21× and 7.91×. Using Varys, one can take two approaches to handle multi-wave coflows
– (i) creating separate coflows for each wave as they become available or (ii) introducing barriers
to determine the bottleneck of the combined coflow – that both result in performance loss. In the
former, Varys can efficiently schedule each wave but increases the stage-level CCT by ignoring
the fact that all waves must finish for the stage to finish. The 56× improvement in bin-3 presents
an extreme example: one straggler coflow was scheduled much later than the rest, increasing the
entire stage’s runtime. In the latter, artificial barriers decrease parallelism and network utilization.
Aalo circumvents the dilemma by creating exactly one coflow per stage for any number of waves
and by avoiding barriers. Aalo’s improvements over per-flow fairness remained similar to that in
Section 6.8.2.

6.8.4 Impact on DAG Scheduling
In this section, we evaluate Aalo using multi-stage jobs. Because the Facebook trace consists of
only single-coflow jobs, we used the Cloudera industrial benchmark [17,26] consisting of 20 TPC-
DS queries. We ensured that each stage consists of a single wave, but multiple coflows from the
same job can still run in parallel (Figure 6.4c).

Figure 6.11 shows that Aalo outperforms both per-flow fairness and Varys for DAGs that have
more than one levels. Because Aalo does not introduce artificial barriers and can distinguish be-

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 94

0!

1!

2!

3!

1! 2! 5! 10! 15!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Number of Queues (K)!

0!

1!

2!

3!

1E6! 1E7! 1E8! 1E9! 1E10!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Q1 Upper Limit ()!Q1
hi!

0!

1!

2!

3!

N
or

m
al

iz
ed

C
om

p.
 T

im
e!

Num Queues (K), Queue Size!

0!

1!

2!

3!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

K, E, !Q1
hi!

(a) Qhi
1 = 10 MB; E = 10

0!

1!

2!

3!

1! 2! 5! 10! 15!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Number of Queues (K)!

0!

1!

2!

3!

1E6! 1E7! 1E8! 1E9! 1E10!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Q1 Upper Limit ()!Q1
hi!

0!

1!

2!

3!

N
or

m
al

iz
ed

C
om

p.
 T

im
e!

Num Queues (K), Queue Size!

0!

1!

2!

3!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

K, E, !Q1
hi!

(b) K = 10; E = 10

0!

1!

2!

3!

1! 2! 5! 10! 15!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Number of Queues (K)!

0!

1!

2!

3!

1E6! 1E7! 1E8! 1E9! 1E10!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Q1 Upper Limit ()!Q1
hi!

0!

1!

2!

3!

N
or

m
al

iz
ed

C
om

p.
 T

im
e!

Num Queues (K), Queue Size!

0!

1!

2!

3!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

K, E, !Q1
hi!

(c) Exponentially-Spaced Queues

0!

1!

2!

3!

1! 2! 5! 10! 15!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Number of Queues (K)!

0!

1!

2!

3!

1E6! 1E7! 1E8! 1E9! 1E10!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Q1 Upper Limit ()!Q1
hi!

0!

1!

2!

3!

N
or

m
al

iz
ed

C
om

p.
 T

im
e!

Num Queues (K), Queue Size!

0!

1!

2!

3!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

K, E, !Q1
hi!

(d) Equal-Sized Queues

Figure 6.12: [Simulation] Aalo’s sensitivity (measured as improvements over per-flow fairness)
to (a) the number of queues, (b) the size of the highest-priority queue, and (c) exponential and (d)
linear queue thresholds.

tween coflows from different levels of the critical path, improvements over Varys (3.7× on average)
are higher than that over per-flow fairness (1.7× on average).

6.8.5 Sensitivity Analysis
In this section, we first examine Aalo’s sensitivity to the number of queues and their thresholds
for heavy-tailed coflow size distributions. Later, we evaluate Aalo’s performance for light-tailed
distributions.

The Number of Queues (K) Aalo performs increasingly better than per-flow fairness as we
increase the number of queues (Figure 6.12a). However, we observe the largest jump as soon as
Aalo starts avoiding head-of-line blocking forK = 2. Beyond that, we observe diminishing returns
from more queues.

Queue Thresholds For more than one queues, Aalo must carefully determine their thresholds.
Because we have defined queue thresholds as a function of the size of the initial queueQhi

1 (§6.5.4),
we focus on its impact on Aalo’s performance. Recall that as we increase Qhi

1 , more coflows will
be scheduled in the FIFO order in the highest-priority Q1. Figure 6.12b shows that as we increase

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 95Sim$Sensi5vity$SizeDist-

0!

1!

2!

10MB! 100MB! 1GB! 10GB! 100GB! 1TB!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Maximum Coflow Size!

Per-Flow Fairness!
FIFO w/o Multiplexing!

0!

1!

2!

10MB-! 10MB+! 1GB-! 1GB+! 100GB-! 100GB+!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Maximum Coflow Size!

Per-Flow Fairness!
FIFO w/o Multiplexing!

(a) Uniformly distributed coflow sizes

Sim$Sensi5vity$SizeDist-

0!

1!

2!

10MB! 100MB! 1GB! 10GB! 100GB! 1TB!
N

or
m

al
iz

ed

C
om

p.
 T

im
e!

Maximum Coflow Size!

Per-Flow Fairness!
FIFO w/o Multiplexing!

0!

1!

2!

10MB-! 10MB+! 1GB-! 1GB+! 100GB-! 100GB+!

N
or

m
al

iz
ed

C

om
p.

 T
im

e!

Maximum Coflow Size!

Per-Flow Fairness!
FIFO w/o Multiplexing!

(b) Fixed-size coflows

Figure 6.13: [Simulation] Improvements in average CCTs using Aalo (a) when coflow sizes are
uniformly distributed up to different maximum values and (b) when all coflows have the same size.

Qhi
1 up to 100 MB and schedule almost 60% of the coflows [68, Figure 4(e)] in the FIFO order,

Aalo’s performance remains steady. This is because all these coflows carry a tiny fraction of the
total traffic (≤ 0.1%). If we increase Qhi

1 further and start including increasingly larger coflows
in the FIFO-scheduled Q1, performance steadily deteriorates. Finally, Figure 6.12c demonstrates
the interactions of E, the multiplicative factor used to determine queue thresholds, with K and
Qhi

1 . We observe that for K > 2, Aalo’s performance is steady for a wide range of (K, E, Qhi
1)

combinations.

What About Non-Exponential Queue Thresholds? Instead of creating exponentially larger
queues, one can create equal-sized queues. Given the maximum coflow size of 10 TB, Figure 6.12d
shows Aalo’s performance for varying number of equal-sized queues – it requires orders of magni-
tude more queues to attain performance similar to exponential spacing. Although creating logical
queues is inexpensive at end hosts, more queues generate more “queue-change” events and increase
coordination costs.

Impact of Coflow Size Distributions So far we have evaluated Aalo on coflows that follow
heavy-tailed distribution. Here, we compare Aalo against per-flow fairness and a non-preemptive
FIFO scheduler on coflows with uniformly-distributed and fixed sizes. We present the average
results of ten simulated runs for each scenario with 100 coflows, where coflow structures follow
the distribution in Table 6.3.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 96

Scalability-

8! 17
!

11
5!

49
5! 99
2!

1!

10!

100!

1000!

10
0!

10
00
!

10
00

0!

50
00

0!

10
00

00
!

C
oo

or
di

na
tio

n
Ti

m
e

(m
s)
!

(Emulated) Daemons!

0!

0.5!

1!

1.5!

2!

10
 m

s!

10
0

m
s!

1
s!

10
 s!

10
0

s!

N
or

m
. C

om
p.

 T
im

e!

Coordination Period (Δ)!
(a) Overheads at Scale

Scalability-

8! 17
!

11
5!

49
5! 99
2!

1!

10!

100!

1000!

10
0!

10
00
!

10
00

0!

50
00

0!

10
00

00
!

C
oo

or
di

na
tio

n
Ti

m
e

(m
s)
!

(Emulated) Slaves!

0!

0.5!

1!

1.5!

2!

10
 m

s!

10
0

m
s!

1
s!

10
 s!

10
0

s!

N
or

m
. C

om
p.

 T
im

e!

Coordination Period (Δ)!
(b) Impact of ∆

Figure 6.14: [EC2] Aalo scalability: (a) more daemons require longer coordination periods (Y-axis
is in log scale), and (b) delayed coordination can hurt overall performance (measured as improve-
ments over per-flow fairness).

In Figure 6.13a, coflow sizes follow uniform distributions U(0, x), where we vary x. In Fig-
ure 6.13b, all coflows have the same size, and we select sizes slightly smaller and bigger than
Aalo’s queue thresholds. We observe that in both cases, Aalo matched or outperformed the com-
petition. Aalo emulates the FIFO scheduler when coflow sizes are smaller than Qhi

1 (=10 MB). As
coflows become larger, Aalo performs better by emulating the efficient Varys scheduler.

6.8.6 Aalo’s Scalability
To evaluate Aalo’s scalability, we emulated running up to 100, 000 daemons on 100-machine EC2
clusters. Figure 6.14a presents the time to complete a coordination round averaged over 500 rounds
for varying number of emulated daemons (e.g., 10, 000 emulated daemons refer to each machine
emulating 100 daemons). During each experiment, the coordinator transferred scheduling informa-
tion for 100 concurrent coflows on average to each of the emulated daemons.

Even though we might be able to coordinate 100, 000 daemons in 992ms, the coordination pe-
riod (∆) must be increased. To understand the impact of coordination on performance, we reran
the earlier experiments (§6.8.2) for increasingly higher ∆ (Figure 6.14b). For ∆ = 1s, Aalo’s
improvements over per-flow fairness dropped slightly from 1.93× to 1.78×. For ∆ > 1s, perfor-
mance started to drop faster and plummeted at ∆ > 10s. These trends hold across coflow bins and
reinforce the need for coordination (Theorem C.1.1).

Because ∆ must increase for Aalo to scale, sub-∆ coflows can further be improved if Aalo
uses explicit switch/network support [82, 89]. However, we note that tiny coflows are still better
off using Aalo than per-flow fairness schemes.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 97

6.9 Discussion
Determining Optimal Queue Thresholds Finding the optimal number of queues and corre-
sponding thresholds remains an open problem. Recent results in determining similar thresholds in
the context of flows [45] do not immediately extend to coflows because of cross-flow dependen-
cies. Dynamically changing these parameters based on online learning can be another direction of
future work.

Decentralizing Aalo Decentralizing D-CLAS primarily depends on the following two factors.

1. Decentralized calculation of coflow sizes, and

2. Avoiding receiver-side contentions without coordination.

Approximate aggregation schemes such as Push-Sum [133] can be good starting points to develop
solutions for the former within reasonable time and accuracy. The latter is perhaps more difficult,
because it relies on fast propagation of receiver feedback throughout the entire network for quick
convergence of sender- and receiver-side rates. Both can improve from in-network support from
the fabric similar to that in CONGA [34].

Faster Interfaces and In-Network Bottlenecks As 10 GbE NICs become commonplace, a com-
mon concern is that scaling non-blocking fabrics might become cost prohibitive.9 Aalo performs
well even if the network is not non-blocking – for example, on the EC2 network used in the evalu-
ation (§6.8). When bottleneck locations are known, e.g., rack-to-core links, Aalo can be modified
to allocate rack-to-core bandwidth instead of NIC bandwidth [63]. For in-network bottlenecks, one
can try enforcing coflows inside the network [213]. Nonetheless, designing, deploying, and enforc-
ing distributed, coflow-aware routing and load balancing solutions remain largely unexplored.

6.10 Related Work
Coflow Schedulers Aalo’s improvements over its clairvoyant predecessor Varys [68] are three-
fold. First, it schedules coflows without any prior knowledge, making coflows practical in presence
of task failures and straggler mitigation techniques. Second, it supports pipelining and dependen-
cies in multi-stage DAGs and multi-wave stages through a simpler, non-blocking API. Finally, un-
like Varys, Aalo performs well even for tiny coflows by avoiding coordination. For larger coflows,
however, Varys marginally outperforms Aalo by exploiting complete knowledge.

Aalo outperforms existing non-clairvoyant coflow schedulers, namely Orchestra [67] and
Baraat [82], by avoiding head-of-line blocking unlike the former and by using global information
unlike the latter. While Baraat’s fully decentralized approach is effective for light-tailed coflow

9A recent report from Google [186] suggests that it is indeed possible to build full-bisection bandwidth networks
with up to 100, 000 machines, each with 10 GbE NICs, for a total capacity of 1 Pbps.

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 98

distributions, we prove in Theorem C.1.1 that the lack coordination can be arbitrarily bad in the
general case.

Qiu et al. have recently provided the first approximation algorithm for the clairvoyant coflow
scheduling problem [175]. Similar results do not exist for the non-clairvoyant variation.

Flow Schedulers Coflows generalize traditional point-to-point flows by capturing the
multipoint-to-multipoint aspect of data-parallel communication. While traffic managers such as
Hedera [33] and MicroTE [51] cannot directly be used to optimize coflows, they can be extended
to perform coflow-aware throughput maximization and load balancing.

Transport-level mechanisms to minimize FCTs, both clairvoyant (e.g., PDQ [118], pFabric
[37], and D3 [200]) and non-clairvoyant (e.g., PIAS [45]), fall short in minimizing CCTs as well
[68].

Non-Clairvoyant Schedulers Scheduling without prior knowledge is known as non-clairvoyant
scheduling [156]. To address this problem in time-sharing systems, Corbató et al. proposed the
multi-level feedback queue (MLFQ) algorithm [74], which was later analyzed by Coffman and
Kleinrock [70]. Many variations of this approach exist in the literature [162,176], e.g., foreground-
background or least-attained service (LAS). In single machine (link), LAS performs almost as good
as SRPT for heavy-tailed distributions of task (flow) sizes [176]. We prove that simply applying
LAS throughout the fabric can be ineffective in the context of coflows (Theorem C.1.1). The
closest instance of addressing a problem similar to ours is ATLAS [134], which controls concurrent
accesses to multiple memory controllers in chip multiprocessor systems using coordinated LAS.
However, ATLAS does not discretize LAS to ensure interactivity, and it does not consider coupled
resources such as the network.

DAG and Workflow Schedulers When the entire DAG and completion times of each stage are
known, the Critical Path Method (CPM) [131, 132] is the best known algorithm to minimize end-
to-end completion times. Without prior knowledge, several dynamic heuristics have been proposed
with varying results [205]. Most data-parallel computation frameworks use breadth-first traversal
of DAGs to determine the scheduling order of each stage [8, 9, 208]. Aalo’s heuristic enforces
the finishes-before relationship between dependent coflows, but it cannot differentiate between
independent coflows.

6.11 Summary
Aalo makes coflows more practical in data-parallel clusters in presence of multi-wave, multi-
stage jobs and dynamic events such as failures and speculations. It implements a non-clairvoyant,
multi-level coflow scheduler (D-CLAS) that extends the classic LAS scheduling discipline to data-
parallel clusters and addresses ensuing challenges through priority discretization. Aalo performs
comparable to schedulers such as Varys that use complete information. Using loose coordination, it
can efficiently schedule tiny coflows and outperforms per-flow mechanisms across the board by up

CHAPTER 6. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 99

to 2.25×. Moreover, for DAGs and multi-wave coflows, Aalo outperforms both per-flow fairness
mechanisms and Varys by up to 3.7×. Trace-driven simulations show Aalo to be 2.7× faster than
per-flow fairness and 16× better than decentralized coflow schedulers.

100

Chapter 7

Fair Inter-Coflow Scheduling

So far we have considered how to efficiently schedule clairvoyant and non-clairvoyant coflows
in a shared cluster. However, efficient schedulers focus primarily on improving the average per-
formance (i.e., the average CCT) and do not provide performance isolation. In this chapter, we
consider the latter objective. By focusing on fair inter-coflow scheduling, we extend the appli-
cability of the coflow abstraction to an even wider setting, where coflows can be generated by
non-cooperative tenants in multi-tenant environments such as public clouds. In the process, we
generalize single- [80, 121, 165] and multi-resource max-min fairness [83, 97, 112, 166] and multi-
tenant network sharing solutions [124, 140, 171, 172, 179, 184] under a unifying framework.

The remainder of this chapter is organized as follows. The next section covers the state-of-
the-art in single- and multi-resource fairness as well as multi-tenant network sharing. Section 7.2
outlines our proposed algorithm, called High Utilization with Guarantees or HUG. Section 7.3
presents the requirements of a fair inter-coflow scheduling algorithm, followed by a discussion
on the inefficiencies of existing solutions in Section 7.4. Next, we present HUG and discuss its
properties in Section 7.5, and we present HUG’s implementation details in Section 7.6. We then
evaluate HUG’s performance in Section 7.7, survey related work in Section 7.8, and summarize
our findings in Section 7.9.

7.1 Background
In shared, multi-tenant environments such as public clouds [3, 15, 16, 20, 117], the need for pre-
dictability and the means to achieve it remain a constant source of discussion [47, 123, 124, 139,
140,171,172,179,184]. The general consensus – recently summarized by Mogul and Popa [153] –
is that tenants expect isolation guarantee for performance predictability, while network operators
strive for work conservation to achieve high utilization and strategy-proofness to ensure isolation.

Max-min fairness [121] – a widely-used [49, 80, 100, 102, 165, 185, 188] allocation policy –
achieves all three in the context of a single link. It provides optimal isolation guarantee by maxi-
mizing the minimum amount of bandwidth allocated to each flow. The bandwidth allocation of a
user (tenant) determines its progress – i.e., how fast she can complete its data transfer. It is work-

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 101

M1

A1 B1
M2

A2 B2
M3

A3 B3

L1 L4 L2 L5 L3 L6

L2

L1A1

A2

B1

B2

A3

A4

B3

B4

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

50%

0% L1 L2
1/2

1/2 5/6100%

1/6

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(a)

100%

50%

0%
link1 link2
2/3

1/3 2/3

1/9

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% 1/2

1/2 11/12

1/12

100%

50%

0%
3/4

1/4 1/2

1/2

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2 L1 L2 L1 L2

L1 L2

100%

50%

0% 1/2

1/4 1/2

1/12
L1 L2

(b) Max-min fairness

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(c) DRF [97]

Figure 7.1: Bandwidth allocations in two independent links (a) for CA (orange) with correlation
vector

−→
dA = 〈1

2
, 1〉 and CB (dark blue) with

−→
dB = 〈1, 1

6
〉. Shaded portions are unallocated.

conserving, because, given enough demand, it allocates the entire bandwidth of the link. Finally,
max-min fairness is strategyproof, because tenants cannot get more bandwidth by lying about their
demands (e.g., by sending more traffic).

However, a datacenter network involves many links, and tenants’ demands on different links are
often correlated. Informally, we say that the demands of a tenant on two links i and j are correlated,
if for every bit the tenant sends on link-i, she sends at least α bits on link-j. More formally, with
every tenant-k, we associate a correlation vector

−→
dk = 〈d1k, d2k, . . . , dnk〉, where dik ≤ 1, which

captures the fact that for every dik bits tenant-k sends on link-i, she sends at least djk bits on link-j.
Examples of applications with correlated demands long-running services [54,141], multi-tiered

enterprise applications [113], and realtime streaming applications [27, 209]. However, optimal
coflow schedules using MADD [67, 68] are the most common example. Consider the example
in Figure 7.1a with two independent links and two coflows CA and CB. The correlation vector−→
dA = 〈1

2
, 1〉 means that (i) link-2 is CA’s bottleneck, (ii) for every PA rate CA is allocated on the

bottleneck link, it requires at least PA/2 rate on link-1, resulting in a progress of PA, and (iii)
except for the bottleneck link, coflows’ demands are elastic, meaning CA can use more than PA/2
rate on link-1.1 Similarly, CB requires at least PB/6 on link-2 for PB on link-1. If we denote the
rate allocated to Ck on link-i by aik, then Pk = mini

{
aki
dki

}
, the minimum demand-normalized rate

allocation over all links, captures its progress.
Given this setting, one would want to generalize max-min fairness to coflows with correlated

and elastic demands while maintaining its desirable properties: optimal isolation guarantee, high
utilization, and strategy-proofness.

Intuitively, one would want to maximize the minimum progress over all coflows, i.e.,
maximize min

k
Pk, where mink Pk corresponds to the isolation guarantee of an allocation al-

gorithm. We make three observations. First, when there is a single link in the system, this
model trivially reduces to max-min fairness. Second, getting more aggregate bandwidth is not

1This does not increase the instantaneous progress, but may be beneficial for CA as the system is dynamic and for
network operators to increase total utilization.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 102

always better. For CA in the example, 〈50Mbps, 100Mbps〉 is better than 〈90Mbps, 90Mbps〉 or
〈25Mbps, 200Mbps〉, even though the latter ones have more bandwidth in total. Third, simply
applying max-min fairness to individual links is not enough. In our example, max-min fairness
allocates equal resources to both coflows on both links, resulting in allocations 〈1

2
, 1
2
〉 on both links

(Figure 7.1b). Corresponding progress (PA = PB = 1
2
) result in a suboptimal isolation guarantee

(min{PA,PB} = 1
2
).

Dominant Resource Fairness (DRF) [97] extends max-min fairness to multiple resources and
prevents such sub-optimality. It equalizes the shares of dominant resources – link-2 (link-1) for CA
(CB) – across all tenants (coflows) with correlated demands and maximizes the isolation guaran-
tee in a strategyproof manner. As shown in Figure 7.1c, using DRF, both coflows have the same
progress – PA = PB = 2

3
, 50% higher than using max-min fairness on individual links. Moreover,

DRF’s isolation guarantee (min{PA,PB} = 2
3
) is optimal across all possible allocations and is

strategyproof.
However, DRF allocations were originally designed for inelastic demands [117]. Hence, they

are not work-conserving. For example, bandwidth on link-2 in shades is not allocated to either
coflow. In fact, we show that DRF can result in arbitrarily low utilization. This is wasteful in a
transient and online environment, because unused bandwidth cannot be recovered.

7.2 Solution Outline
We start by showing that strategy-proofness is a necessary condition for providing the optimal
isolation guarantee – i.e., to maximize mink Pk – in non-cooperative environments. Next, we prove
that work conservation – i.e., when coflows are allowed to use unallocated resources, such as the
shaded area in Figure 7.1c, without constraints – spurs a race to the bottom. It incentivizes each
coflow to continuously lie about its demand correlations, and in the process, it decreases the amount
of useful work done by all coflows! Meaning, simply making DRF work-conserving can do more
harm than good.

We propose a two-stage algorithm, High Utilization with Guarantees (HUG), to achieve our
goals. HUG provides the highest utilization while maintaining the optimal isolation guarantee and
strategy-proofness in non-cooperative environments. It allows coflows to elastically increase band-
width usage as long as they cannot compromise strategy-proofness. In cooperative environments,
where strategy-proofness might be a non-requirement, HUG simultaneously ensures work conser-
vation and the optimal isolation guarantee.

HUG is easy to implement and scales well. Even with 100, 000 machines, new allocations can
be centrally calculated and distributed throughout the network in less than a second – faster than
that suggested in the literature [41]. Moreover, each machine can locally enforce HUG-calculated
allocations using existing traffic control tools without any changes to the network.

We demonstrate the effectiveness of our proposal using EC2 experiments and trace-driven sim-
ulations. In non-cooperative environments, HUG provides the optimal minimum guarantee, which
is 7.4× higher than existing network sharing solutions such as PS-P [124, 171, 172] and 7000×
higher than traditional per-flow fairness, and 1.4× better utilization than DRF for the given trace.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 103

M1

A1 B1
M2

A2 B2
M3

A3 B3

L1 L4 L2 L5 L3 L6

L2

L1A1

A2

B1

B2

A3

A4

B3

B4

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

50%

0% L1 L2
1/2

1/2 5/6100%

1/6

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(a) Hose model

3

A1
B1

A2
B2

A2
B2

L1

L2

L3

L4

L5

L6

A1

B3

1

3

2

1

2

B1

B3
(b) Fabric model

Figure 7.2: Coflows CA (orange) and CB (dark blue) and their communication patterns over a
3×3 datacenter fabric. The network fabric has three uplinks (L1–L3) and three downlinks (L4–L6)
corresponding to the three physical machines.

In cooperative environments, HUG outperforms PS-P and per-flow fairness by 1.49× and 45.75×
in terms of the maximum slowdown of job communication stages, and 70% jobs experience lower
slowdown w.r.t. DRF. Finally, HUG provides 1.77× better maximum CCT than Varys, although
Varys outperforms it by 1.45× in terms of average CCT.

7.3 Preliminaries
In this section, we elaborate on the assumptions and notations used in this chapter and summarize
the desirable requirements for fair scheduling across multiple coflows.

7.3.1 Assumptions and Notations

We denote the correlation vector of the kth coflow (k ∈ {1, ...,M}) as
−→
dk = 〈d1k, d2k, . . . d2Pk 〉,

where dik and dP+i
k (1 ≤ i ≤ P) respectively denote the uplink and downlink demands normalized2

by link capacities (Ci) and
∑P

i=1 d
i
k =

∑P
i=1 d

P+i
k .

For the example in Figure 7.2, consider coflow correlation vectors:

−→
dA = 〈1

2
, 1, 0, 1,

1

2
, 0〉

−→
dB = 〈1, 1

6
, 0, 0, 1,

1

6
〉

2Normalization helps us consider heterogeneous capacities. By default we normalize the correlation vector such
that the largest component equals to 1 unless otherwise specified.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 104

where dik = 0 indicates the absence of any source or destination, and dik = 1 indicates the bottle-
neck link(s) of a coflow.

Correlation vectors depend on coflows, that can be from elastic-demand batch jobs [6,77,119,
208] or from realtime streaming applications [23, 209] with inelastic demands.

7.3.2 Intra-Coflow Fair Sharing Requirements
Given correlation vectors of M coflows, we must use an allocation algorithm A to determine the
allocations of each coflow:

A({
−→
d1 ,
−→
d2 , . . . ,

−→
dM}) = {−→a1 ,−→a2 , . . . ,−→aM}

where −→ak = 〈a1k, a2k, . . . a2Pk 〉 and aik is the fraction of link-i guaranteed to the kth coflow.
As identified in previous work on multi-tenant fairness [47,171], any allocation policy A must

meet three requirements – (optimal) isolation guarantee, high utilization, and proportionality – to
fairly share the cloud network:

1. Isolation Guarantee: Each source or destination VM should receive minimum bandwidth
guarantees proportional to their correlation vectors so that coflows can estimate worst-case
performance. Formally, progress of Ck (Pk) is defined as its minimum demand satisfaction
ratio across the entire fabric:

Pk = min
1≤i≤2P

{
aik
dik

}
For example, progress of coflows CA and CB in Figure 7.3 are PA = PB = 1

2
.3 Note that

Pk = 1
M

if
−→
dk = 〈1, 1, . . . , 1〉 for all coflows (generalizing PS-P), and Pk = 1

M
for flows on

a single link (generalizing per-flow fairness).

Isolation guarantee is defined as the lowest progress across all coflows, i.e., min
k
Pk.

2. High Utilization: Spare network capacities should be utilized by coflows with elastic de-
mands to ensure high utilization as long as it does not decrease anyone’s progress.

A related concept is work conservation, which ensures that either a link is fully utilized or
demands from all flows traversing the link have been satisfied [121, 171]. Although existing
research equalizes the two [46, 47, 124, 140, 171, 172, 179, 184, 202], we show in the next
section why that is not the case.

3. Proportionality: A tenant’s (coflow’s) bandwidth allocation should be proportional to its
number of VMs similar to resources such as CPU and memory. We further discuss this
requirement in more details in Section 7.5.3.

3We are continuing the example in Figure 7.2 but omitted the rest of −→ak, because there is either no contention or
they are symmetric.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 105

100%

50%

0%
link1 link2
2/3

1/3 2/3

1/9

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% 1/2

1/2 11/12

1/12

100%

50%

0%
3/4

1/4 1/2

1/2

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2 L1 L2 L1 L2

L1 L2

100%

50%

0% 1/2

1/4 1/2

1/12
L1 L2

Figure 7.3: Bandwidth consumptions of CA (orange) and CB (dark blue) with correlation vectors−→
dA = 〈1

2
, 1〉 and

−→
dB = 〈1, 1

6
〉 using PS-P [124, 171, 172]. Both coflows have elastic demands.

7.4 Challenges and Inefficiencies of Existing Solutions
Prior work on multi-tenant fairness also identified two tradeoffs: isolation guarantee vs. propor-
tionality and high utilization vs. proportionality. However, it has been implicitly assumed that
tenant-level (coflow-level) optimal isolation guarantee4 and network-level work conservation can
coexist. Although optimal isolation guarantee and network-level work conservation can coexist for
a single link – max-min fairness is an example – optimal isolation guarantee and work conserva-
tion can be at odds when we consider the network as a whole. This has several implications on
both isolation guarantee and network utilization. In particular, we can (1) either optimize utiliza-
tion, then maximize the isolation guarantee with best effort; or (2) optimize the isolation guarantee,
then maximize utilization with best effort. Appendix D.1 has more details.

7.4.1 Full Utilization but Suboptimal Isolation Guarantee
As shown in prior work [171, Section 2.5], flow-level and VM-level mechanisms – e.g., per-flow,
per source-destination pair [171], and per-endpoint fairness [179,184] – can easily be manipulated
by creating more flows or by using denser communication patterns. To avoid such manipulations,
many allocation mechanisms [124, 171, 172] equally divide link capacities at the coflow level and
allow work conservation for coflows with unmet demand. Figure 7.3 shows an allocation using
PS-P [171] with isolation guarantee 1

2
. If both coflows have elastic-demand applications, they will

consume entire allocations; i.e., −→cA = −→cB = −→aA = −→aB = 〈1
2
, 1
2
〉, where −→ck = 〈c1k, c2k, . . . c2Pk 〉 and cik

is the fraction of link-i consumed by Ck. Recall that aik is the guaranteed allocation of link-i to Ck.
However, PS-P and similar mechanisms are also sub-optimal. For the ongoing example, Fig-

ure 7.4a shows the optimal isolation guarantee of 2
3
, which is higher than that provided by PS-P. In

short, full utilization does not necessarily imply optimal isolation guarantee!
4Optimality means that the allocation maximizes the isolation guarantee across all coflows, i.e.,

maximize
{

min
k
Pk

}
.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 106

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(a) Optimal isolation guarantee

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% 1/2

1/2 11/12

1/12

100%

50%

0%
3/4

1/4 1/2

1/2

100%

50%

0% L1 L2
1/2 1/12

11/1211/24

L1 L2 L1 L2
(b) CA lies

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% 1/2

1/2 11/12

1/12

100%

50%

0%
3/4

1/4 1/2

1/2

100%

50%

0% L1 L2
1/2 1/12

11/1211/24

L1 L2 L1 L2
(c) CB lies

100%

50%

0%
link1 link2
2/3

1/3 2/3

1/9

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% 1/2

1/2 11/12

1/12

100%

50%

0%
3/4

1/4 1/2

1/2

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2 L1 L2 L1 L2

L1 L2

100%

50%

0% 1/2

1/4 1/2

1/12
L1 L2

(d) Both lie

Figure 7.4: Bandwidth consumptions of CA (orange) and CB (dark blue) with correlation vectors−→
dA = 〈1

2
, 1〉 and

−→
dB = 〈1, 1

6
〉, when both have elastic demands. (a) Optimal isolation guarantee

in the absence of work conservation. With work conservation, (b) CA increases its progress at the
expense of CB, and (c) CB can do the same, which results in (d) a prisoner’s dilemma.

7.4.2 Optimal Isolation Guarantee but Low Utilization
In contrast, optimal isolation guarantee does not necessarily mean full utilization. In general, op-
timal isolation guarantees can be calculated using DRF [97], which generalizes max-min fairness
to multiple resources. In the example of Figure 7.4a, each uplink and downlink of the fabric is an
independent resource – 2P in total.

Given this premise, it seems promising and straightforward to keep the DRF-component for op-
timal isolation guarantee and strategy-proofness, and try to ensure full utilization by allocating all
remaining resources.In the following two subsections, we show that work conservation may render
isolation guarantee no longer optimal, and even worse, may reduce useful network utilization.

7.4.3 Naive Work Conservation Reduces Optimal Isolation Guarantee
We first illustrate that even the optimal isolation guarantee allocation degenerates into the classic
prisoner’s dilemma problem [90] in the presence of work conservation. As a consequence, optimal
isolation guarantees decrease (Figure 7.5).

If CA can use the spare bandwidth in link-2, it can increase its progress at the expense of
CB by changing its correlation vector to

−→
d′A = 〈1, 1〉. With an unmodified

−→
dB = 〈1, 1

6
〉, the new

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 107

2!
3!

2!
3!

,! 11!
12!

1!
2!

,!
1!
2!

3!
4!

,! 1!
2!

1!
2!

,!

Tenant-A!

Te
na

nt
-B
!

Lies!Doesn’t Lie!

Doesn’t Lie!

Lies!

Figure 7.5: Payoff matrix for the example in Section 7.4. Each cell shows progress of CA and CB.

allocation would be −→aA = 〈1
2
, 1
2
〉 and −→aB = 〈1

2
, 1
12
〉. However, work conservation would increase it

to −→aA = 〈1
2
, 11
12
〉 (Figure 7.4b). Overall, progress of CA would increase to 11

12
, while decreasing it to

1
2

for CB. As a result, the isolation guarantee decreases from 2
3

to 1
2
.

The same is true for CB as well. Consider again that only CB reports a falsified correlation vec-
tor
−→
d′B = 〈1, 1〉 to receive a favorable allocation: −→aA = 〈1

4
, 1
2
〉 and −→aB = 〈1

2
, 1
2
〉. Work conservation

would increase it to −→aB = 〈3
4
, 1
2
〉 (Figure 7.4c). Overall, progress of CB would increase to 3

4
, while

decreasing it to 1
2

for CA, resulting in the same suboptimal isolation guarantee 1
2
.

Since both coflows gain by lying, they would both simultaneously lie:
−→
d′A =

−→
d′B = 〈1, 1〉,

resulting in a lower isolation guarantee 1
2

(Figure 7.4d). Both are worse off!
In this example, the inefficiency arises due to allocating all spare resources to the coflow who

demands more. We show in Appendix D.2 that intuitive allocation policies of all spare resources
– e.g., allocating all to who demands the least, allocating equally to all coflows with non-zero
demands, and allocating proportionally to coflows’ demands – do not work as well.

7.4.4 Naive Work Conservation can Even Decrease Utilization
Now consider that neither coflow has elastic demands; i.e., they can only consume bandwidth
proportional to their correlation vectors. A similar prisoner’s dilemma unfolds (Figure 7.5), but
this time, network utilization decreases as well.

Given the optimal isolation guarantee allocation, −→aA = −→cA = 〈1
3
, 2
3
〉 and −→aB = −→cB = 〈2

3
, 1
9
〉,

both coflows have the same optimal isolation guarantee: 2
3
, and 2

9
th of link-2 remain unused (Fig-

ure 7.6a). One would expect work conservation to utilize this spare capacity.
Same as before, if CA changes its correlation vector to d′A = 〈1, 1〉, it can receive an allocation

−→aA = 〈1
2
, 11
12
〉 and consume −→cA = 〈11

24
, 11
12
〉. This increases its isolation guarantee to 11

12
and total

network utilization increases (Figure 7.6b).
Similarly, CB can receive an allocation −→aB = 〈3

4
, 1
2
〉 and consume −→cB = 〈3

4
, 1
8
〉 to increase its

isolation guarantee to 3
4
. Utilization decreases (Figure 7.6c).

Consequently, both coflows lie and consume −→cA = 〈1
4
, 1
2
〉 and −→cB = 〈1

2
, 1
12
〉 (Figure 7.6d).

Instead of increasing, work conservation decreases network utilization!

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 108

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(a) Optimal isolation guarantee

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(b) CA lies

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(c) CB lies

100%

50%

0% 1/2

1/4 1/2

1/12

100%

50%

0% L1 L2
1/2 1/12

11/1211/24 100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9 (d) Both lie

Figure 7.6: Bandwidth consumptions of CA (orange) and CB (dark blue) with correlation vectors−→
dA = 〈1

2
, 1〉 and

−→
dB = 〈1, 1

6
〉, when neither has elastic demands. (a) Optimal isolation guarantee

allocation is not work-conserving. With work conservation, (b) utilization can increase or (c) de-
crease, based on which coflow lies. (d) However, ultimately it lowers utilization. Shaded means
unallocated.

7.4.5 Summary
The primary takeaways of this section are the following:

• Existing mechanisms provide either suboptimal isolation guarantees or low network utiliza-
tion, but never both.

• There exists a strong tradeoff between optimal isolation guarantee and high utilization. The
key lies in strategy-proofness: optimal isolation guarantee requires it, while work conserva-
tion nullifies it.

• Unlike in the case of flows on single links, work conservation can decrease network utiliza-
tion instead of increasing it in the case of coflows.

7.5 HUG: Analytical Results
In this section, we show that despite the tradeoff between optimal isolation guarantee and work
conservation, it is possible to increase utilization to some extent. Moreover, we present HUG, the

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 109

dk Correlation vector of Ck’s demand

ak Guaranteed allocation to Ck

Pk Progress of Ck; Pk := min
1≤i≤2P

{
aik
dik

}
, where subscript i stands for link-i

ck Resource consumption of Ck

Isolation Guarantee min
k
Pk

Optimal Isolation Guarantee max
{

min
k
Pk
}

(Network) Utilization
∑
i

∑
k

cik

Table 7.1: Notations and definitions in HUG.

optimal algorithm to ensure maximum achievable utilization without sacrificing optimal isolation
guarantees and strategy-proofness of DRF.

We defer the proofs from this section to Appendix D.3.

7.5.1 Root Cause of the Tradeoff: Unrestricted Sharing of Spare Resources
Going back to Figure 7.4, both coflows were incentivized to lie because they were receiving spare
resources without any restriction in the pursuit of work conservation.

After CA lied in Figure 7.4b, both PA and PB decreased to 1
2
. However, by cheating, CA

managed to increase its allocation in link-1 to 1
2

from 1
3
. Next, it relied on indiscriminate work

conservation to increase its allocation in link-2 to 11
12

from the initial 1
2
, effectively increasing PA

to 11
12

. Similarly in Figure 7.4c, CB first increased its allocation in link-2 to 1
2

from 1
9

and then work
conservation increased its allocation in link-1 to 3

4
from the initial 1

2
.

Consequently, we must eliminate a coflow’s incentive to gain too much spare resources by ly-
ing; i.e., a coflow should never be able to manipulate and increase its progress due to work conser-
vation (Lemma D.3.1). Furthermore, algorithms that provide optimal isolation guarantee cannot
always be work-conserving even in the presence of elastic-demand applications (Corollary D.3.2).

7.5.2 The Optimal Algorithm: HUG
Given the tradeoff, our goal is to design an algorithm that can achieve the highest utilization while
keeping the optimal isolation guarantee and strategy-proofness. Formally, we want to

Maximize
∑

i∈[1,2P]

∑
k∈[1,M]

cik

subject to min
k∈[1,M]

Pk = P∗,
(7.1)

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 110

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

100%

50%

0% 1/2

1/2 11/12

1/12

100%

50%

0%
3/4

1/4 1/2

1/2

100%

50%

0% L1 L2
1/2 1/12

11/1211/24

L1 L2 L1 L2

100%

50%

0% L1 L2
2/3

1/3 2/3

1/3

Figure 7.7: Allocations with maximum achievable utilizations and optimal isolation guarantees
for CA (orange) and CB (dark blue).

Algorithm 6 High Utilization with Guarantees (HUG)

Input: {
−→
dk}: reported correlation vector of Ck, ∀k

Output: {−→ak}: guaranteed resource allocated to Ck, ∀k

Stage 1: Calculate optimal isolation guarantee (P∗) and minimum allocations −→ak = P∗
−→
dk , ∀k

Stage 2: Restrict maximum utilization for each of the 2P links, such that cik ≤ P∗, ∀i,∀k

where cik is Ck’s actual consumption5 on link-i given aik, and P∗ is the optimal isolation guarantee.
We observe that an optimal algorithm would have restricted CA’s progress in Figure 7.4b and

CB’s progress in Figure 7.4c to 2
3
. Consequently, they would not have been incentivized to lie and

the prisoner’s dilemma could have been avoided. Algorithm 6 – referred to as High Utilization
with Guarantees (HUG) – is such a two-stage allocation mechanism that guarantees maximum
utilization while optimizing the isolation guarantees across coflows and is strategyproof.

In the first stage, HUG allocates resources to maximize isolation guarantees across coflows. To
achieve this, we pose our problem as a 2P -resource fair sharing problem and use DRF [97, 166]
to calculate P∗. By reserving these allocations, HUG ensures isolation. Moreover, because DRF is
strategy-proof, coflows are guaranteed to use these allocations (i.e., cik ≥ aik).

While DRF maximizes the isolation guarantees (a.k.a. dominant shares), it results in low net-
work utilization. In some cases, DRF may even have utilization arbitrarily close to zero, and HUG
can increase that to 100% (Lemma D.3.6).

To achieve this, the second stage of HUG maximizes utilization while still keeping the allo-
cation strategyproof. In this stage, we calculate upper bounds to restrict how much of the spare
capacity a coflow can use in each link, with the constraint that the largest share across all links
cannot increase (Lemma D.3.1). As a result, Algorithm 6 remains strategy-proofness across both
stages. Because bandwidth restrictions can be applied locally, HUG can be enforced in individual
machines.

Illustrated in Figure 7.7, the upper-bound is set at 2
3

for both coflows, and CB can use its elastic
demand on link-2’s spare resource, while CA cannot as it has reached its bound on link-2.

5Can differ from allocation when coflows are lying.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 111

Cloud Network Sharing

Dynamic Sharing

Flow-Level
(Per-Flow Fairness)

No isolation guarantee

VM-Level
(Seawall, GateKeeper)
No isolation guarantee

Tenant-/Network-Level

Strategyproof

Highest Utilization for
Optimal Isolation Guarantee

(HUG)

Not Strategyproof

Reservation
(SecondNet, Oktopus, Pulsar, Silo)

Uses admission control

Suboptimal
Isolation Guarantee
(PS-P, EyeQ, NetShare)

Not work-conserving

Work-Conserving
Optimal Isolation Guarantee

(HUG)

Suboptimal
Isolation Guarantee
(PS-P, EyeQ, NetShare)

Work-conserving

Figure 7.8: Design space for cloud network sharing.

7.5.3 HUG Properties
We list the main properties of HUG in the following.

1. In non-cooperative cloud environments, HUG is strategyproof (Theorem D.3.3), maximizes
isolation guarantees (Corollary D.3.4), and ensures the highest utilization possible for an
optimal isolation guarantee allocation (Theorem D.3.5).

2. In cooperative environments such as private datacenters, HUG maximizes isolation guaran-
tees and is work-conserving. Work conservation is achievable because strategy-proofness is
a non-requirement in this case.

3. Because HUG provides the optimal isolation guarantee, it provides min-cut proportionality
(§ 7.5.3) in both non-cooperative and cooperative environments.

Figure 7.8 surveys the design space for cloud network sharing and places HUG in context by
following the thick red lines through the design tree. At the highest level, unlike many alternatives
[41, 46, 109, 123], HUG is a dynamic allocation algorithm. Next, HUG enforces its allocations at

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 112

… … … …

(a) CX (N-to-N)

… … … …

(b) CY (N-to-1)

Figure 7.9: Communication patterns of CX and CY with (a) two minimum cuts of size P , where
P is the number of fabric ports, and (b) one minimum cut of size 1. The size of the minimum cut
of a communication pattern determines its effective bandwidth even if it were placed alone.

the coflow-/tenant-/network-level, because flow- or VM-/machine-level allocations [179, 184] do
not provide isolation guarantee.6

Due to the hard tradeoff between optimal isolation guarantee and work conservation in non-
cooperative environments, HUG ensures the highest utilization possible while maintaining the
optimal isolation guarantee. It incentivizes coflows to expose their true demands, ensuring that
they actually consume their allocations instead of causing collateral damages. In cooperative
environments, where strategy-proofness might be a non-requirement, HUG simultaneously en-
sures both work conservation and the optimal isolation guarantee. In contrast, existing solu-
tions [124, 140, 171, 172] are suboptimal in both environments.

Min-Cut Proportionality

Prior work promoted the notion of proportionality [171], where tenants (coflows) would expect
to receive total allocations proportional to their number of VMs regardless of communication
patterns. Meaning, two coflows, each with N VMs, should receive equal bandwidth even if CX
has an all-to-all communication pattern (i.e.,

−→
dX = 〈1, 1, . . . , 1〉) and CY has an N -to-1 pattern

(i.e., exactly one 1 in
−→
dY and the rest are zeros). Figure 7.9 shows an example. Clearly, CY will

be bottlenecked at its only receiver; trying to equalize them will only result in low utilization. As
expected, FairCloud proved that such proportionality is not achievable as it decreases both isolation
guarantee and utilization [171]. None of the existing algorithms provide proportionality.

Instead, we consider a relaxed notion of proportionality, called min-cut proportionality, that
depends on communication patterns and ties proportionality with a coflow’s progress. Specifically,
each coflow receives minimum bandwidth proportional to the size of the minimum cut [92] of their
communication patterns. Meaning, in the earlier example, CX would receive P times more total
bandwidth than CY , but they would have the optimal isolation guarantee (PX = PY = 1

2
).

6HUG can be applied in those settings with minor adaptations.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 113

Min-cut proportionality and optimal isolation guarantee can coexist, but they both have trade-
offs with work conservation.

7.6 Design Details
This section discusses how to implement, enforce, and expose HUG (§7.6.1), how to exploit place-
ment to further improve HUG’s performance (§7.6.2), and how HUG can handle weighted, hetero-
geneous scenarios (§7.6.3).

7.6.1 Architectural Overview
In public clouds, where tenants generate individual coflows, HUG can easily be implemented atop
existing monitoring infrastructure (e.g., Amazon CloudWatch [2]). Tenants would periodically up-
date the correlation vectors of their coflows through a public API, and the operator would compute
new allocations and update enforcing agents within milliseconds.

HUG API The user-facing API simply transfers a coflow’s correlation vector (
−→
dk) to the operator.−→

dk = 〈1, 1, . . . , 1〉 is used as the default correlation vector. By design, HUG incentivizes tenants to
report and maintain accurate correlation vectors. This is because the more accurate it is – instead
of the default

−→
dk = 〈1, 1, . . . , 1〉 – the higher are its progress and performance.

Calculating the correlation vector of a coflow is simple. For clairvoyant coflows, one can use
MADD. For non-clairvoyant coflows, one can just report the current rate estimations. Existing
techniques in traffic engineering can provide good accuracy in estimating and predicting demand
matrices for coarse time granularities [50, 51, 63, 127, 128].

Centralized Computation For any update, the operator must run Algorithm 6. Although Stage-
1 requires solving a linear program to determine the optimal isolation guarantee (i.e., the DRF
allocation) [97], it can also be rewritten as a closed-form equation [166] when coflows can scale up
and down following their normalized correlation vectors. The progress of all coflows after Stage-1
of Algorithm 6 – i.e., the optimal isolation guarantee – is:

P∗ =
1

max
1≤i≤2P

M∑
k=1

dik
(7.2)

The guaranteed minimum allocations of Ck can be calculated as aik = P∗dik for all 1 ≤ i ≤ 2P .
Equation (7.2) is computationally inexpensive. For our 100-machine cluster, calculating P∗

takes about 5 microseconds. Communicating the decision to all 100 machines takes just 8 millisec-
onds and to 100, 000 (emulated) machines takes less than 1 second (§7.7.2).

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 114

Local Enforcement Enforcement in Stage-2 of Algorithm 6 is simple as well. After reserving
the minimum uplink and downlink allocations for each coflow, each machine needs to ensure that
no coflow can consume more than P∗ fraction of the machine’s up or down link capacities (Ci)
to the network; i.e., aik ≤ cik ≤ P∗. The spare is allocated among coflows using local max-min
fairness subject to coflow-specific upper-bounds.

7.6.2 VM Placement and Re-Placement/Migration
While P∗ is optimal for a given placement, it can be improved by changing the placement of a
coflow’s VMs based on its correlation vector. One must perform load balancing across all machines
to minimize the denominator of Equation (7.2). Cloud operators can employ optimization frame-
works such as [54] to perform initial VM placement and periodic migrations with an additional load
balancing constraint. However, VM placement is a notoriously difficult problem because of often-
incompatible constraints such as fault-tolerance and collocation [54], and we consider a detailed
study a future work. It is worth noting that with any VM placement, HUG provides the highest
attainable utilization without sacrificing optimal isolation guarantee and strategy-proofness.

7.6.3 Additional Constraints
Weighted Coflows Giving preferential treatment to coflows is simple. Just using wk

−→
dk instead

of
−→
dk in Equation (7.2) would account for coflow weights (wk for Ck) in calculating P∗.

Heterogeneous Capacities Because allocations are calculated independently in each machine
based on P∗ and local capacities (Ci), HUG supports heterogeneous link capacities.

Bounded Demands So far we have considered only elastic coflows. If Ck has bounded demands,
i.e., dik < 1 for all i ∈ [1, 2P], calculating a common P∗ and corresponding −→ak in one round
using Equation (7.2) will be inefficient. This is because Ck might require less than the calculated
allocation, and being bounded, it cannot elastically scale up to use it. Instead, we must use the
multi-round DRF algorithm [166, Algorithm 1] in Stage-1 of HUG; Stage-2 will remain the same.
Note that this is similar to max-min fairness in a single link when one flow has a smaller demand
than its 1

n
th share.

7.7 Evaluation
We evaluate HUG using simulations and EC2 experiments under controlled settings as well as
using production traces. The highlights of our findings are as follows.

• HUG isolates coflows at both host and network levels, and it can scale up to 100, 000 machine
with less than one second overhead (§7.7.2).

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 115

NumVMs
1000
10000
100000

0

250

500

750

1 10 25 50 100C
of

lo
w

-A
 B

/W
 (M

bp
s)

Number of Coflow-B Flows

Per-Flow Fairness
HUG

(a) Simulation

NumVMs
1000
10000
100000

0

250

500

750

1 10 25 50 100C
of

lo
w

-A
 B

/W
 (M

bp
s)

Number Coflow-B Flows

Per-Flow Fairness
HUG

(b) EC2

Figure 7.10: Bandwidth allocation of CA at a particular VM, while CB connects to increasingly
larger number of destinations from that same VM.

• HUG ensures the optimal minimum guarantee – almost 7000× more than per-flow fairness
and about 7.4× more than PS-P in production traces – while providing 1.4× higher utiliza-
tion than DRF (§7.7.3).

• HUG outperforms per-flow fairness (PS-P) by 45.75× (1.25×) in terms of maximum slow-
down and by 1.49× (1.14×) in minimizing the average CCT (§7.7.4).

• HUG outperforms Varys in terms of maximum CCT by 1.77×, even though Varys is 1.55×
better in terms of maximum slowdown and 1.45× better in minimizing the average CCT.
This highlights the tradeoff between optimal isolation guarantee and utilization even in co-
operative environments (§7.7.4).

7.7.1 Methodology
We ran our experiments on 100 m2.4xlarge Amazon EC2 [3] instances running on Linux kernel
3.4.37 and used the default htb and tc implementations. While there had been proposals for more
accurate qdisc implementations (e.g., EyeQ [124] and FastPass [167]), the default htb worked
sufficiently well for our purposes. Each of the machines had 1 Gbps NICs, and we could use the
full 100 Gbps bandwidth simultaneously.

For the simulations, we used a flow-level simulator written in Java.
Before each set of experiments, we separately describe corresponding methodology, experi-

mental settings, metrics, and workload in more details.

7.7.2 Benchmarks
We start our evaluation by presenting simulation and experimental results from benchmarks per-
formed on controlled communication patterns and correlation vectors.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 116

Host-Level Scenarios

We first focus on HUG’s ability to ensure coflow isolation at individual machines. We consider a
scenario with two coflows CA and CB that have two sources (A1 and B1) collocated on the same
physical machine. A1 communicates with destination A2, whereas B1 communicates with up to
100 destinations. Assuming both coflows demand the entire capacity from the host machine (i.e.,
d1A = d1B = 1), the outgoing link’s bandwidth must be divided equally between them.

Figure 7.10 presents the allocations ofA1 asB1 communicates with increasingly larger number
of destinations. AsB1 communicates with more and more destinations,A1’s share keep decreasing
using per-flow fairness. On the contrary, HUG isolates CA from CB and ensures maximum isola-
tion guarantee in both simulation and experiment. Note that PS-P would have provided the same
allocation [171, Figure 8], if we had an available implementation with switch support.

Dynamic Network-Level Scenarios

We now extend our scope to an entire cluster with 100 EC2 machines. In this scenario, we have
three coflows CA, CB, and CC that arrive over time, each with 100 VMs; i.e., VMs Ai, Bi, and
Ci are collocated on the ith physical machine. However, they have different communication pat-
terns: coflows CA and CC have pairwise one-to-one communication patterns (100 flows each),
whereas CB follows an all-to-all pattern using 10, 000 flows. Specifically, Ai communicates with
A(i+50)%100, Cj communicates with C(j+25)%100, and any Bk communicates with all Bl, where
i, j, k, l ∈ {1, ..., 100}. Assume that each coflow demands the entire capacity at each machine;
hence, the entire capacity of the cluster should be equally divided among the active coflows to
maximize isolation guarantees.

Figure 7.11a shows that as soon as CB arrives, it takes up the entire capacity in the absence
of isolation guarantee. CC receives only marginal share as it arrives after CB and leaves before it.
Note that CA (when alone) uses only about 80% of the available capacity; this is simply because
just one TCP flow often cannot saturate the link.

Figure 7.11b shows HUG in action. As coflows arrive and depart, their shares are dynamically
calculated, propagated, and enforced in each machine of the cluster.

Scalability

The time for calculating new allocations upon coflow arrival or departure using HUG is less than
5 microseconds in our 100 machine cluster. In fact, a recomputation due to a coflow’s arrival,
departure, or change of correlation vector would take about 8.6 milliseconds on average for a
100, 000-machine datacenter.

Communicating a new allocation takes less than 10 milliseconds to 100 machines and around 1
second for 100, 000 emulated machines (i.e., sending the same message 1000 times to each of the
100 machines).

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 117

0

50

100

0 60 120 180 240 300 360 420 480 540
To

ta
l A

llo
c

(G
bp

s)

Time (Seconds)

Coflow A
Coflow B
Coflow C

(a) Per-flow Fairness

0

50

100

0 60 120 180 240 300 360 420 480 540

To
ta

l A
llo

c
(G

bp
s)

Time (Seconds)

Coflow-A
Coflow B
Coflow C

(b) HUG

Figure 7.11: [EC2] Bandwidth consumptions of three coflows arriving over time in a 100-machine
EC2 cluster. Each coflow has 100 VMs, but each uses a different communication pattern (§7.7.2).
(b) HUG isolates coflows CA and CC from coflow CB.

7.7.3 Instantaneous Fairness
While Section 7.7.2 evaluated HUG in controlled, synthetic scenarios, this section focuses on
HUG’s instantaneous characteristics in the context of a large-scale cluster. Due to the lack of im-
plementations of DRF [97] and PS-P [171], we compare against them only in simulation.

Methodology We use a one-hour snapshot of a MapReduce trace extracted from a 3200-machine
Facebook cluster with 100 concurrent jobs collected by Popa et al. [171, Section 5.3]. Machines
are connected to the network using 1 Gbps NICs. In the trace, a job with M mappers and R
reducers – hence, the corresponding M × R shuffle – is described as a matrix with the amount
of data to transfer between each M -R pair. We calculated the correlation vectors of individual
shuffles/coflows from their communication matrices using MADD.

Given the workload, we calculate the progress of each coflow using different mechanisms and
cross-examine characteristics such as isolation guarantee, utilization, and proportionality.

Impact on Progress Figure 7.12a presents the distribution of progress of each coflow. Recall
that the progress of a coflow is the amount of bandwidth it is receiving in its bottleneck up or
downlink (i.e., progress can be at most 1 Gbps). Both HUG and DRF (overlapping vertical lines
in Figure 7.12a) ensure the same progress (0.74 Gbps) for all coflows. Note that despite having
same progress, coflows will finish at different times based on how much data each one has to
send (§7.7.4). Per-flow fairness and PS-P provide very wide ranges: 112 Kbps to 1 Gbps for the

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 118

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Fr
ac

tio
n

of
 C

of
lo

w
s

Progress (Gbps)

Per-Flow Fairness
PS-P
HUG
DRF

0

5

10

15

20

25

Av
g.

 B
an

dw
id

th
 (G

bp
s)

(a) Distribution of progress

0

0.5

1

1.5

2

2.5

Pe
r-

Fl
ow

PS
-P

H
U

G
D

R
FTo

ta
l A

llo
ca

tio
n

(T
bp

s)

(b) Total allocation

0

0.5

1

0.0001 0.01 1 100

Fr
ac

tio
n

of
 C

of
lo

w
s

Aggregate Bandwidth (Gbps)

Per-Flow Fairness
PS-P
HUG
DRF

(c) Distribution of allocations

Figure 7.12: [Simulation] HUG ensures higher isolation guarantee than high-utilization schemes
such as per-flow fairness and PS-P, and provides higher utilization than multi-resource fairness
schemes such as DRF.

former and 0.1 Gbps to 1 Gbps for the latter. Coflows with many flows crowd out the ones with
fewer flows under per-flow fairness, and PS-P suffers by ignoring correlation vectors and through
indiscriminate work conservation.

Impact on Utilization By favoring large coflows, per-flow fairness and PS-P do succeed in their
goals of increasing network utilization (Figure 7.12b). The former utilizes 69% of 3.2 Tbps total
capacity across all machines and the latter utilizes 68.6%. In contrast, DRF utilizes only 45%. HUG
provides a common ground by extending utilization to 62.4% without breaking strategy-proofness
and providing optimal isolation guarantee.

Figure 7.12c breaks down total bandwidth of each coflow, demonstrating two high-level points:

1. HUG ensures overall higher utilization (1.4× on average) than DRF by ensuring equal
progress for smaller coflows and by using up additional bandwidth for larger coflows. It
does so while ensuring the same optimal, isolation guarantee as DRF.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 119

Bin 1 (SN) 2 (LN) 3 (SW) 4 (LW)

% of Coflows 52% 16% 15% 17%

Table 7.2: Coflows binned by length (Short and Long) and width (Narrow and Wide).

2. Per-flow fairness crosses HUG at the 90th percentile; i.e., the top 10% coflows receive more
bandwidth than they do under HUG, while the other 90% receive less than they do using
HUG. PS-P crosses over at the 76th percentile.

Impact on Proportionality A collateral benefit of HUG is that coflows receive allocations pro-
portional to their bottleneck demands. Consequently, despite the same progress across all coflows
(Figure 7.12a), their total allocations vary (Figure 7.12c) based on the size of minimum cuts in
their communication patterns.

7.7.4 Long-Term Characteristics
In this section, we compare HUG’s long-term impact on performance.

Methodology For these simulations, we use a MapReduce/Hive trace from a 3000-machine pro-
duction Facebook cluster – the same trace used in the earlier chapters. Coflows in this trace have
diverse length (i.e., size of the longest flow) and width (i.e., the number of flows) characteristics
(Table 7.2). We consider a coflow to be short if its longest flow is less than 5 MB and narrow if it
has at most 50 flows. We calculated the correlation vector of each coflow as we did before (§ 7.7.3).

Metrics We consider two metrics: maximum slowdown and average CCT to respectively measure
long-term progress and performance characteristics.

We measure long-term progress of a coflow as its CCT due to a scheme normalized by the
minimum CCT if it were running alone; i.e.,

Slowdown =
Compared Duration
Minimum Duration

The minimum value to slowdown is one – the smaller the better.
We measure performance as the CCT of a scheme normalized by HUG’s CCT; i.e.,

Normalized Comp. Time =
Compared Duration

HUG’s Duration

If the normalized completion time of a scheme is greater (smaller) than one, HUG is faster (slower).

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 120

Min Max AVG STDEV

Per-Flow Fairness 1 1281 15.52 65.54

PS-P 1 35 2.22 2.97

HUG 1 28 1.86 2.25

DRF 1 29 2.11 2.66

Varys 1 18 1.43 0.99

Table 7.3: [Simulation] Slowdowns using different mechanisms w.r.t. the minimum CCTs.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Slowdown w.r.t. Minimum Required Completion Time

Per-Flow Fairness
PS-P
HUG
DRF
Varys

(a) CDF

0.01

0.1

1
1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Slowdown w.r.t. Minimum Required Completion Time

Per-Flow Fairness
PS-P
HUG
DRF
Varys

(b) CCDF

Figure 7.13: [Simulation] Slowdowns of coflows using different mechanisms w.r.t. the minimum
CCTs. Both X-axes and the Y-axis of (b) are in log scale.

Improvements Over Per-Flow Fairness HUG improves over per-flow fairness both in terms of
slowdown and performance. The maximum slowdown using HUG is 45.75× better than that of per-
flow fairness (Table 7.3). Overall, HUG provides better slowdown across the board (Figure 7.13)
– 61% are better off using HUG and the rest remain the same.

HUG improves the average and 95th percentile CCT by 1.49× (Figure 7.14). The biggest wins
comes from bin-1 and bin-2 that include the so-called narrow coflows with less than 50 flows.

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 121

4.
80

6.
15

1.
33

1.
31 1.
49

1.
19 1.
27

1.
11

1.
14

1.
14

1.
13

1.
13

1.
11

1.
15

1.
14

1.
00

0.
74

0.
76

0.
68

0.
69

0
1
2
3
4
5
6
7
8

Bin 1 Bin 2 Bin 3 Bin 4 ALLN
or

m
al

iz
ed

 C
om

p.
 T

im
e

Coflow Type

Per-Flow Fairness
PS-P
DRF
Varys

(a) Average

6.
73

6.
76

1.
38

1.
26 1.

83

1.
24

1.
28

1.
11

1.
14

1.
16

1.
16

1.
13

1.
10

1.
13

1.
14

1.
11

0.
85 0.
97

0.
50 0.
74

0
1
2
3
4
5
6
7
8

Bin 1 Bin 2 Bin 3 Bin 4 ALLN
or

m
al

iz
ed

 C
om

p.
 T

im
e

Coflow Type

Per-Flow Fairness
PS-P
DRF
Varys

(b) 95th percentile

Figure 7.14: [Simulation] Average and 95th percentile improvements in CCT using HUG.

This reinforces the fact that HUG isolates coflows with fewer flows from those with many flows.
Overall, HUG pays off across all bins. Finally, it provides 1.12× better maximum CCT than per-
flow fairness (Figure 7.15).

Improvements Over PS-P HUG improves over PS-P in terms of maximum slowdown by 1.25×.
45% of the coflows are better off using HUG. HUG also providers better average CCT than PS-P
for an overall improvement of 1.14×. Large improvements again come in bin-1 and bin-2 because
PS-P also favors coflows with more flows. HUG also provides 1.21× better maximum CCT than
PS-P.

Note that instantaneous high utilization of per-flow fairness and PS-P (§7.7.3) does not help in
the long run due to lower isolation guarantee.

Improvements Over DRF While HUG and DRF has the same maximum slowdown, 70%
coflows are better off using HUG. HUG also providers better average CCT than DRF for an overall
improvement of 1.14×. Furthermore, it provides 1.34× better maximum CCT than DRF.

Comparison to Varys Varys outperforms HUG by 1.55× in terms of the maximum slowdown
and by 1.45× in terms of average CCT. However, because Varys attempts to improve the average

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 122

0

1

0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Coflow Completion Time (Seconds)

Per-Flow Fairness
PS-P
HUG
DRF
Varys

(a) CDF

0.01

0.1

1
0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Coflow Completion Time (Seconds)

Per-Flow Fairness
PS-P
HUG
DRF
Varys

(b) CCDF

Figure 7.15: [Simulation] CCTs using different mechanisms w.r.t. the minimum completion times.
Both X-axes and the Y-axis of (b) are in log scale.

CCT by prioritization, it risks in terms of maximum CCT. More precisely, HUG outperforms Varys
by 1.77× in terms of maximum CCT.

7.8 Related Work
Single-Resource Fairness The concept of max-min fairness was first proposed by Jaffe [121] to
ensure at least 1

n
th of a link’s capacity to each flow. Thereafter, many mechanisms have been pro-

posed to achieve it, including weighted fair queueing (WFQ) [80,165] and approaches similar to or
extending WFQ [49, 100, 102, 185, 188]. We generalize max-min fairness to parallel communica-
tion activities observed in datacenter and cloud applications, and show that unlike in the single-link
scenario, optimal isolation guarantee, strategy-proofness, and work conservation cannot coexist.

Multi-Resource Fairness Dominant Resource Fairness (DRF) [97] by Ghodsi et al. maximizes
the dominant share of each user while being strategyproof. A large body of work – both before
[160,193] and after [83,112,166] DRF – have attempted to improve the system-level efficiency of

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 123

multi-resource allocation; however, all come at the cost of strategy-proofness. We have proven that
work-conserving allocation without strategy-proofness can hurt utilization instead of improving it.

Dominant Resource Fair Queueing (DRFQ) [96] maintains DRF properties over time within
individual middleboxes. HUG generalizes DRF to environments with elastic demands to increase
utilization across the entire network.

Joe-Wong et al. [125] have a presented a unifying framework to capture fairness-efficiency
tradeoffs in multi-resource environments. This framework assumes a cooperative environment;
meaning, tenants do not lie about their demands. HUG falls under their FDS family of mecha-
nisms. In non-cooperative environments, however, we have shown that the interplay between work
conservation and strategy-proofness comes to the forefront, and our work complements the frame-
work of [125].

Network-Wide / Tenant-Level Fairness Proposals for sharing cloud networks range from static
allocation [41, 46, 123] and VM-level guarantees [179, 184] to variations of network-wide sharing
mechanisms [124, 140, 171, 172, 202]. We refer the reader to the survey by Mogul and Popa [153]
for an overview.

FairCloud [171] stands out by systematically discussing the tradeoffs and addresses several
limitations of other approaches. Our work generalizes FairCloud [171] and many proposals similar
to FairCloud’s PS-P policy [124, 172, 179]. When all tenants (coflows) have elastic demands, i.e.,
all correlation vectors have all elements as 1, we give the same allocation; for all other cases, we
provide higher isolation guarantee and utilization.

Efficient Schedulers Researchers have also focused on efficient scheduling and/or packing of
datacenter resources to minimize job and communication completion times [37, 66–68, 82, 105,
118]. Our work is complementary to these pieces of work in that we focus on coflow isolation
instead of average-case performance.

7.9 Summary
HUG ensures highest network utilization with optimal isolation guarantee across multiple coflows
in non-cooperative environments. It outperforms efficient coflow schedulers such as Varys in terms
of maximum CCT, while sacrificing the average CCT. In cooperative environments, where strategy-
proofness might be a non-requirement, HUG simultaneously ensures both work conservation and
the optimal isolation guarantee.

Results in this chapter are not specific to coflows either. We have proved that there is a
strong tradeoff between optimal isolation guarantees and high utilization in non-cooperative public
clouds, and work conservation can decrease utilization instead of improving it, because no network
sharing algorithm remains strategyproof in its presence.

HUG generalizes single-resource max-min fairness to multi-resource environments whenever
tenants’ demands on different resources are correlated and elastic. In particular, it provides opti-
mal isolation guarantee, which is significantly higher than that provided by existing multi-tenant

CHAPTER 7. FAIR INTER-COFLOW SCHEDULING 124

network sharing algorithms. HUG also complements DRF with provably highest utilization with-
out sacrificing other useful properties of DRF. Regardless of resource types, the identified tradeoff
exists in general multi-resource allocation problems, and all those scenarios can employ HUG.

125

Chapter 8

Conclusions and Future Work

How do we improve the communication performance of distributed data-parallel applications in the
era of massively parallel clusters? This dissertation shows that the answer lies in the applications
themselves: by realigning application-level performance objectives with network-level optimiza-
tions, the coflow abstraction can improve the performance of coexisting applications, and when
necessary, it can be used to provide performance isolation as well.

Apart from the performance gains enabled by the coflow abstraction by generalizing point-
to-point flows to multipoint-to-multipoint communication, a core contribution of this work is the
generalized all-or-nothing characteristic captured by each coflow that is pervasive across differ-
ent types of resources in data-parallel clusters. The generalization is due to the coupled nature of
the network – unlike CPU speed or disk/memory capacity, one must allocate resources on both
senders and receivers in the case of the network. Additionally, we discovered the concurrent open
shop scheduling with coupled resources problem and characterized it for the first time, generaliz-
ing concurrent open shop scheduling that applies to parallel jobs, distributed files, and distributed
in-memory datasets. Consequently, many of the algorithms and principles derived from this disser-
tation can potentially be applied to contexts beyond the network.

In the rest of this chapter, we summarize some of the lessons that influenced this work in
Section 8.1, highlight broader impacts of this dissertation in Section 8.2, propose several directions
for future work in Section 8.3, and finally, conclude.

8.1 Lessons Learned
Leverage Application-Level Knowledge The genesis of the coflow abstraction traces back to
one simple observation – a communication stage of a distributed data-parallel application cannot
complete until all its flows have completed. Instead of just improving tail latencies of flows in
datacenters, we examined the applications that create the flows and how individual flows impact
application-level performance.

We observed that the decades-old contract between the network and the applications using it –
a point-to-point flow’s performance is directly aligned with that of a client-server application – has

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 126

since changed. Applications today are increasingly more distributed by design, and their commu-
nication takes place between groups of tasks in successive computation stages. Such applications
can make progress only after all the flows have completed. While this phenomenon has become
common over the past decade, none of the previous work questioned the flow abstraction itself
when optimizing flow-level performance.

The coflow abstraction bridges the gap by generalizing point-to-point flows to multipoint-to-
multipoint communication. As applications evolve, we must always be prepared to revisit and
question our assumptions and make adjustments to accommodate application-aware changes in
network-level abstractions to keep the two aligned.

Exploit the Capabilities of Underlying Environments In addition to applications, the network
itself – especially in the datacenter context – has gone through a major revolution. Datacenter net-
works today have orders-of-magnitude higher bandwidth and lower latency than traditional local-
area networks or the Internet. Our decision to extensively exploit the characteristics of datacenters
have had several implications on this work.

First, low-latency datacenter networks made it possible for us to even consider the coflow
abstraction that fundamentally requires coordination to be effective.

Second, in terms of building coflow-enabling systems, we opted for a centralized design based
on the collective community experience of building compute frameworks or file systems for data-
centers.1 The simplicity allowed us to focus on different aspects of intra- and inter-coflow schedul-
ing without being encumbered by the challenges of decentralized designs. Although a centralized
design for managing the network does not seem controversial anymore with the rise of software-
defined networking (SDN) in last few years, it was indeed one when we started.

Finally, assuming full bisection bandwidth in datacenters allowed us to have a simplified net-
work model for analyses and algorithm design. We found empirically that the resulting algorithms
work well even when datacenters have some oversubscription. Recent reports from the indus-
try [186] suggest that building full bisection bandwidth networks at large scale is feasible today.

Design for Shared Environments While it is appealing to optimize for a specific application
or environment, another lesson from our work is that real-world deployments are more complex,
have more constraints, and often shared among a variety of applications. Because we designed
to accomodate as many distributed data-parallel applications as possible, we had to iteratively
simplify our abstraction and interfaces to leverage it. Over time, we found that this very simplicity
allowed us to apply the coflow abstraction to a diverse set of applications and objectives.

Another key decision was to aim for public clouds that are shared between multiple tenants.
While this may have restricted us from exploiting the full potential of coflow scheduling from a
performance perspective, it forced us to extract as much as possible from the application layer
without making any changes to the underlying operating system or network equipment. In the long

1Although not covered in this dissertation, the author has also worked on building and deploying other datacenter-
scale systems including compute frameworks, file systems, and resource allocators [54, 63, 208].

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 127

run, it increased the portability of our artifacts, and allowed us and others to deploy, run, evaluate,
build on top of, and compare against them on diverse environments.

Perhaps the most surprising outcome of designing for shared environments is that there are
more opportunities to improve over existing solutions. For example, the optimal clairvoyant intra-
coflow algorithm (MADD) can improve over traditional per-flow fairness by up to 1.5×. In the
presence of coflows from multiple applications, Varys gains significantly more over traditional
techniques because they make increasingly more mistakes. Similarly, HUG provides orders-of-
magnitude better isolation guarantee among coflows in public clouds than per-flow fairness.

Simplicity Increases Applicability Finally, part of what made the coflow abstraction increas-
ingly more general and applicable over time is its simplicity. We started with a collection of par-
allel flows belonging to one application with complete knowledge of individual flows under the
assumption that the application has a single stage, all tasks in that stage are scheduled at the same
time, and tasks do not fail. As we simplified the abstraction by removing each of these assump-
tions, coflows became applicable to multi-stage jobs, where each stage can have multiple waves
of tasks, and there can be arbitrary failures, restarts, and speculative executions of those tasks. By
focusing on the instantaneous share of a coflow instead of its completion time, we showed that one
can also provide performance isolation.

Individual coflow-based solutions compose as well. For example, an operator can enforce iso-
lation across tenant-level coflows in a shared cloud, and each tenant can perform efficient coflow
scheduling inside its isolated share. Similarly, for clairvoyant coflows, one can support coflow
deadlines alongside minimizing the average completion time. Finally, separating coflow schedul-
ing from transport layer protocols enabled us to build solutions that run well on today’s networks
and are likely to be able to leverage future innovations in the underlying layers.

8.2 Impact
This dissertation has already impacted several practical and theoretical aspects of networking in
distributed data-parallel applications and big data clusters in both academic and industrial settings.

8.2.1 Theoretical Impact
Scheduling Perhaps the biggest theoretical contribution of this work is simply identifying and
characterizing the “concurrent open shop scheduling with coupled resources” family of problems,
generalizing the concurrent open shop scheduling problem [144, 149, 155, 180]. In addition, we
showed that unlike many traditional scheduling problems, Graham’s list scheduling heuristic [103,
104] – and permutation scheduling in general – is not guaranteed to result in good solutions due to
the matching constraints from sender-receiver coupling in the network.

The first approximation algorithm for clairvoyant inter-coflow scheduling to minimize the aver-
age CCT is due to Qiu et al. [175]. They presented a polynomial-time deterministic approximation

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 128

algorithm with an approximation ratio of
67

3
and a randomized version of the algorithm, with a

ratio 9 +
16
√

2

3
. Similar results do not yet exist for the non-clairvoyant variation.

Routing RAPIER [213] makes a first attempt toward co-optimizing scheduling and routing in
datacenters using coflows as building blocks. By exploiting coflow-encapsulated information dur-
ing routing, RAPIER selects routes for individual flows in oversubscribed, multi-path datacenter
networks, while scheduling coflows at the same time. The joint solution can perform better than
scheduling or routing independently.

Placement Corral [122] performs network-aware task placement in the context of distributed
data-parallel applications. The authors showed that using clairvoyant inter-coflow scheduling (i.e.,
Varys) on top of Corral can significantly improve the median job completion time [122, Figure 14].
Even when not using Corral, Varys decreased the median job completion time by 45% over TCP
in their evaluation. This reaffirms our findings about the impact of CCT on job completion times
on a completely different set of workloads.

8.2.2 Real-World Impact
Open-Source Software Software artifacts developed throughout this dissertation are available
as open-source software, enabling several groups to work on coflow-aware scheduling in optical
as well as hybrid networks. A simplified version of Cornet now ships as the default broadcast
mechanism for Apache Spark since release-1.1.0 and used by thousands of users and hundreds of
companies for different applications.

Another vote of confidence for our work comes from the recent move toward separating com-
munication layers from individual applications and consolidating them under a separate subsystem.
Key examples include the pluggable Shuffle Service exposed by Apache YARN [195] that is used
by Hadoop, Spark, and other systems, as well as the communication layer design of TensorFlow,
Google’s latest machine learning system [28]. This is a crucial step toward the generalized archi-
tecture for cross-application communication optimization proposed in this dissertation.

Network Support for Low-Latency Coflows Baraat [82] performs decentralized coflow-aware
scheduling that works well for small coflows. In the process, the authors demonstrated that coflows
can be implemented at the packet level through cooperation between network equipment and lower
layers of the network stack in end hosts.

On a similar note, Ferguson et al. [89] outlined how coflows can exploit in-network isolation
mechanisms for avoiding some of the performance issues faced by our application-layer imple-
mentations.

Going forward, we envision pervasive use of coflows not only within datacenters but in other
contexts as well.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 129

8.3 Future Work
In this section, we identify several avenues for future work. Whenever possible, we highlight the
primary challenges and possible solutions to address them.

8.3.1 Scheduling-Routing Co-Design for Coflows Over General Graphs
Throughout this dissertation, we have assumed datacenter networks to have full bisection band-
width and network edges to be the only bottlenecks. While this is often true in practice [106, 158,
186] and simplifies the designs and analyses of our solutions, there are three natural scenarios
where this assumption may not hold.

1. Oversubscribed datacenter networks;

2. Link failures in full bisection bandwidth networks; and

3. Geo-distributed data-parallel applications.

The first is simpler because oversubscribed datacenter networks often have certain structure. For
example, rack-to-core links are typical points of oversubscription in many cases [63]. Modifying
our solutions to schedule the oversubscribed links instead of machine-to-rack links can potentially
address this scenario. The second increases difficulty by allowing internal links to become bottle-
necks. Datacenter networks have multiple paths inside the fabric, and link failures can break the
illusion of full bisection bandwidth, causing irregular oversubscription. Finally, geo-distributed
applications deals with data across multiple datacenters throughout the planet [174, 196], and any
internal node (i.e., a datacenter) of the network can also be a sender or receiver of a coflow.

In all cases, there are many paths – possibly with heterogeneous capacities – for each of the
flows in a coflow (Figure 8.1), and bottlenecks are not guaranteed to appear only at network edges.
Meaning, we must simultaneously consider scheduling over time and routing across paths to avoid
internal bottlenecks.

Even in this case, there are two steps to coflow scheduling: (1) scheduling one coflow, and
(2) scheduling multiple coflows to optimize different objectives. To address the first problem in
this new context, one can consider a multi-commodity max-flow min-cut based approach [142]
that would take into account the details of a coflow, network topology, and link bandwidths. The
intuition is to identify the bottlenecks within a coflow to identify appropriate multipath bandwidth
allocations to minimize its CCT. Next, to minimize the average CCT, one can try two alternatives.
One approach would be formulating and solving a joint optimization problem. Another would be
to examine variations of smallest-first heuristics similar to the ones proposed in this dissertation.
In summary, research in this direction will make coflow scheduling more robust to network-level
variations.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 130

(a) Multi-path datacenter networks (b) Inter-datacenter networks

Figure 8.1: Networks with multiple paths between sender-receiver pairs or with link failures can
have in-network bottlenecks.

8.3.2 Coflow Identification Without Application Modification
Another key assumption throughout this dissertation is that developers are willing to make changes
to their code to use coflow APIs, and they can correctly identify and introduce coflows in their
applications. However, despite the best of efforts, both keeping APIs up-to-date with underlying
libraries and learning new APIs to use them correctly are uphill battles [178, 182]. This raises a
fundamental question: can we automatically identify coflows without requiring any application-
level modifications?

To address this, one can use machine learning to identify coflows based on features such as
communication patterns and flow characteristics. While Internet traffic classification has a rich lit-
erature [52,130,150,154,161], some intrinsic differences – e.g., mutual dependencies of flows in a
coflow – prevents their direct adoption. Moreover, timeliness is paramount in coflow identification
because its result would be the input for coflow scheduling algorithms.

Even the best identification algorithm will misidentify some coflows. The challenge is then de-
signing error-tolerant scheduling algorithms. This is different from the non-clairvoyant scheduler
in Aalo, because we might not even know which flows belong to a coflow and which ones do not.

8.3.3 Decentralized Coflow Schedulers
While coordination is critical for good scheduling performance (Theorem C.1.1), it has its over-
heads. Small coflows suffer the most, especially in Varys that requires tight coordination. Aalo
avoids this by not scheduling coflows until they cross a certain threshold. Even then, small coflows
do not perform better than using per-flow fairness or TCP; they are just not worse off using Aalo.
It raises a natural question: can we do better?

One possible direction is changing switches and network components to perform FIFO schedul-
ing based on CoflowIds [82]. This requires significant changes and can cause head-of-line block-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 131

ing; however, for coflows smaller than a certain threshold, application-level solutions cannot com-
pete with hardware-based ones.

On the other hand, for a large class of coflows, one can consider decentralizing Aalo. It will
involve two key factors:

1. Decentralized calculation of coflow sizes, and

2. Avoiding receiver-side contentions without coordination.

Approximate aggregation schemes such as Push-Sum [133] can be good starting points to develop
solutions for the former within reasonable time and accuracy. The latter is more difficult, because
it relies on fast propagation of receiver feedback throughout the entire network for quick conver-
gence of sender- and receiver-side rates. Designing distributed protocols to achieve these goals
with bounded convergence guarantees is an important direction for future work.

8.3.4 Decoupling Bandwidth and Latency for Hierarchical Coflow
Scheduling

We have considered three inter-coflow objectives in this dissertation: minimizing the average
coflow completion time, meeting coflow deadlines, and providing instantaneous fair shares across
coexisting coflows. However, by considering each one independently, we have made an implicit
assumption: all applications put coflows in the same queue, and we must process them to optimize
for one specific objective for that single queue.

We observe two major trends – both enabled by state-of-the-art cloud platforms [11, 14, 24,
117, 195] – that point toward an increasingly more complex setting in practice. First, the tradi-
tional model of offline batch processing [77,119,208] is increasingly being complemented by near-
realtime, online stream processing systems [27,32, 157,209]. To enable data sharing and seamless
transition between the two models, both coexist on shared clusters. The key difference between
the two computation models lies in their performance goals. While the average completion time
can sufficiently capture the performance of batch jobs [68, 82, 105], each streaming application is
a continuous string of small batch jobs, where the completion time of each discrete job, i.e., their
responsiveness, is of utmost importance. The second trend is the use of hierarchical scheduling in
many organizations and cloud platforms that allocate cluster resources among diverse computing
models with an aim to impose organizational structures and priorities [53]. Taken together, they
raise one fundamental question: how to optimize different performance objectives for coflows in
multiple queues that are organized in a hierarchical fashion?

If we momentarily ignore the data-parallel context, the fundamental problem is not new. Sup-
porting multiple classes of traffic while maintaining organizational hierarchies is a classic network-
ing problem that gave rise to the hierarchical link-sharing model [91,183]. We can think of extend-
ing it to the entire fabric so that throughput-sensitive queues of batch jobs and latency-sensitive
streaming applications can coexist following organizational preferences to create a hierarchical
cluster-sharing model. Specifically, we can take the coflow abstraction to its logical extreme by

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 132

considering it to be a multi-port packet, map sequences of coflows – streaming applications gener-
ate periodic coflows and batch jobs create queues of them – to point-to-point flows, and compare
the entire network fabric of the cluster to a single link. Given this setting, we envision building
upon, extending, and in fact, generalizing the concepts of network calculus [75, 76] and hierarchi-
cal fair service curves [188] to coflows over network fabrics.

8.3.5 Coflow-Aware Infrastructure Design
We have a made conscious effort in this dissertation to develop application-level solutions that do
not rely on any support from underlying operating systems, hypervisors, or network components.
This had two benefits. First, it allowed us to deploy and evaluate our solutions on the cloud. Second,
it allowed us to iterate faster and try out a variety of solutions before settling for a good one. Given
that we now have more confidence in the power of the coflow abstraction and the usefulness of
coflow-based solutions, a natural direction is introducing pervasive support for coflows throughout
the infrastructure stack.

The benefits of infrastructure-level support are not difficult to imagine. For example, operating
systems, hypervisors, and middleboxes are the perfect places to implement automated coflow iden-
tification mechanisms, switch-level support for CoflowId can allow faster scheduling, distributed
summing inside the fabric can enable decentralizing the schedulers, and in-network isolation can
separate out control plane messages related to coflows to decrease coordination latencies. We en-
vision a flurry of research activity in coflow-enabled infrastructure design in near future.

8.3.6 Analyses of Concurrent Open Shop Scheduling With Coupled
Resources

One of the core contributions of this dissertation is identifying and characterizing the novel concur-
rent open ship scheduling with coupled resources problem. While we have focused on designing
fast heuristics for practical deployments, understanding the theoretical properties of different vari-
ations of this problem remains relatively unexplored and provides a broad research agenda for
the operations research and theory community. To this date, the only known theoretical result is
due to Qiu et al., who have provided the first approximation algorithm for the offline clairvoyant
coflow scheduling problem [175]. However, similar results do not exist for the non-clairvoyant or
the fair variations. Furthermore, there exist no competitive ratio analyses of the online inter-coflow
scheduling problems.

8.3.7 Generalization to Multiple Resource Types
Although we restrict ourselves only to network resources, nothing stops us, at least conceptually,
from including compute, memory, and disks, if we consider end-to-end coflow scheduling. This
is because, unlike the network, these resources do not pose matching constraints, and their band-
widths can be considered as sequential constraints before network-level senders and receivers in
coflow scheduling formulations.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 133

However, building such a system in practice can be non-trivial, simply because each resource
has its own unique characteristics. In each machine, there are many parallel processors that com-
municate between themselves directly or indirectly, and there are many layers of memory and stor-
age hierarchies with multiple parallel units. Coflows can appear within each resource type at very
diverse time granularities, ranging from microseconds to seconds, requiring different approaches.
Leveraging coflows at each level and stitching them all together to build a practical and balanced
end-to-end solution remains an open problem.

8.3.8 Communication-Driven Application Design
Finally, we want to point out a completely opposite direction of research. This entire dissertation
is built upon the assumption that application frameworks have certain communication character-
istics, and we must try our best to optimize under application-imposed constraints. Why don’t we
rearchitect applications with communication as the driving force?

The time is especially ripe for communication-driven application design because we stand at
the confluence of several hardware trends that all put communication at the center stage. First,
solid-state drives strike a good balance between memory capacity and disk throughput, but a few
of them can easily saturate even 10 GbE NICs. Second, optical networks are being proposed to
achieve higher bisection bandwidth, but applications must exploit wavelength locality to fully uti-
lize their broadcast and multicast capabilities. Third, technologies such as RDMA promise ultra-low
latency in modern datacenters, but we must rethink our RPC and coordination mechanisms to ex-
ploit the latency improvements. Finally, resource disaggregation decouples the growth of compute
and storage capacities, but it increases network utilization between consolidated resource banks.
Given these trends, instead of retrofitting communication optimizations into current applications,
we must consider designing new ones whose data ingestion, storage, and computation are all de-
signed for better exploiting new hardware capabilities.

8.4 Final Remarks
In this dissertation, we have presented the coflow abstraction – the first, generalized solution that
enables one to reason about and take advantage of multipoint-to-multipoint communication com-
mon in distributed data-parallel applications in the same way as traditional point-to-point commu-
nication observed in client-server applications. We cannot claim an abstraction to be the optimal
one, but we have illustrated qualitatively and quantitatively that the expressiveness and power of
coflows easily outperform that of its alternatives. More precisely, we have applied coflows to op-
timize the performance of individual communication patterns as well as to drastically improve
performance and isolation in the presence of multiple, coexisting applications, with or without the
complete knowledge of coflow characteristics. Although it is difficult to predict the exact course
of any research area, the coflow abstraction has already opened the door to many new and excit-
ing problems of practical importance and theoretical interest. We believe that coflows will have
applications well beyond the confines of distributed data-parallel applications.

134

Appendix A

Coflows in Production

A.1 The Facebook Trace
The Facebook cluster consisted of about 3000 machines across 150 racks. Each machine had 16
cores and 48-to-64 GB RAM, and they were connected through a network with 10 : 1 core-to-rack
oversubscription ratio and a total bisection bandwidth of 300 Gbps.

Jobs were submitted using the Hive [8] query engine that composed a query in to a series of
Hadoop jobs, which were then executed using the Hadoop MapReduce framework [6, 77]. Each
MapReduce job consisted of two computation stages: map and reduce, and each stage had one
or more parallel tasks. The number of map tasks (mappers) was determined by the number of
partitions in the input file, and the number of reduce tasks (reducers) was predetermined by the
users or the Hive query engine. Jobs were executed using a centralized, slot-based Fair Scheduler
[207]. Finally, jobs used the Hadoop Distributed File System or HDFS [55] stored the data in the
cluster, three-way replicated for reliability.

The trace consisted of about 790 thousand jobs that can broadly be divided into two categories:
MapReduce jobs with the shuffle stage (320 thousand) and map-only or reduce-only jobs without
any shuffle that were used for data ingestion and pre-processing [63]. The MapReduce jobs con-
sisted of production jobs as well as experimental ones, with significant impact on productivity and
revenue of Facebook.

Table A.1 summarizes the details.

A.2 Impact of Shuffle Coflows
The primary communication stage or coflow of MapReduce is known as the shuffle that transfers
the output of each map task to the input of each reduce task, creating a many-to-many commu-
nication pattern. Note that 40.5% of the jobs in the Facebook trace involves a shuffle, and they
contribute to 43% of the 10 PB expensive cross-rack traffic for the month-long period. Shuffle also
create considerable hotspots in the network [63].

APPENDIX A. COFLOWS IN PRODUCTION 135

Date Oct 2010

Duration One month
Number of Machines 3, 000

Number of Racks 150

Core:Rack Oversubscription 10 : 1

Framework Hadoop [6]
Query Engine Hive [8]
Cluster File System HDFS [55]
File Block Size 256 MB

(a) Infrastructure and software

Total Jobs 790, 000

Total Tasks 205 million
MapReduce Jobs 320, 000

Tasks in MapReduce Jobs 150 million

(b) Jobs

Remote HDFS reads 17%

Shuffle 43%

HDFS replication 40%

(c) Sources of cross-rack traffic

Table A.1: Summary of Facebook traces.

The time complete an entire shuffle, i.e., the shuffle completion time, has a more direct – and
often significant – impact on job completion time depending on what fraction of a job’s end-to-
end lifetime has been spent in shuffle. However, calculating the shuffle completion time of a job –
consequently, the impact of shuffles on job completion times – is non-trivial.

Consider a MapReduce job J with M mappers, R reducers, and a shuffle with M × R flows.
Determining the shuffle finish time is straightforward; it is simply when the last reducer has com-
pleted receiving its input from all the mappers.

tJs.f.t. = max
r
trs.f.t.

where, tJs.f.t. and trs.f.t. refer to the shuffle finish time of the entire job and a reducer r. On the
contrary, one can use either of the following two approaches to determine the shuffle start time:

• Conservative Approach: when all the mappers have completed and all the reducers have
started their shuffle.

tJs.s.t. (conservative) = max
(

max
m

tmt.f.t.,max
r
trs.s.t.

)
where, tJs.s.t. and trs.s.t. refer to the shuffle start time of the entire job and a reducer r, and
tmt.f.t. refers to the task finish time of a mapper m. This is a conservative estimate because
reducers can also start fetching map outputs before all the mappers have finished.

• Aggressive Approach: when at least one reducer has started its shuffle.

tJs.s.t. (aggressive) = min
r
trs.s.t.

The shuffle completion time of a job is the difference between shuffle finish and start times.

tJs.c.t. = tJs.f.t. − t
J
s.s.t.

APPENDIX A. COFLOWS IN PRODUCTION 136

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

. o
f S

hu
fle

s

Fraction of E2E Comp. Time in Shuffle

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

. o
f S

hu
ffl

es

Fraction of E2E Comp. Time in Shuffle

(a) Conservative estimation

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

. o
f S

hu
fle

s

Fraction of E2E Comp. Time in Shuffle

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

. o
f S

hu
ffl

es

Fraction of E2E Comp. Time in Shuffle
(b) Aggressive estimation

Figure A.1: CDFs of the fraction of end-to-end job completion time spent in the shuffle stage in
320, 000 Facebook MapReduce jobs with reduce stages.

Figure A.1 presents two CDFs of the fraction of time spent in the shuffle stage (as defined
above) for the entire trace. For the conservative estimation, 13% of jobs with shuffle stages spent
more than 50% of their time in shuffle; on average, jobs spent 22% of their runtime in shuffle. For
the aggressive estimation, 52% of jobs with shuffle stages spent more than 50% of their time in
shuffle; on average, jobs spent 56% of their runtime in shuffle.

The actual impact lies somewhere in between for this particular trace, and it can significantly
vary based on workload (e.g., filter-heavy vs. join-heavy). For example, in one particular week of
the same trace, 26% of jobs with shuffle stages spent more than 50% of their time in shuffle; on
average, jobs spend 33% of their runtime in shuffle [67].

A.3 Coflow Characteristics
In this section, we focus on understanding the structural characteristics of coflows by highlighting
two key attributes – wide variety in coflow structures and disproportionate footprint of few large
coflows – that play crucial role in designing coflow scheduling algorithms.

A.3.1 Diversity of Coflow Structures
Because a coflow consists of multiple parallel flows, it cannot be characterized just by its size.
Instead, we define four attributes of a coflow for better characterization:

1. Length: the size of its largest flow in bytes;

2. Width: the total number of flows in a coflow;

3. Skew: the coefficient of variation of flow sizes.

4. Size: the sum of flow sizes in bytes; and

APPENDIX A. COFLOWS IN PRODUCTION 137

CDF
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.4

0

0.2

0.4

0.6

0.8

1

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Fr
ac

. o
f C

ofl
ow

s

Coflow Length (Bytes)

0

0.2

0.4

0.6

0.8

1

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Fr
ac

. o
f C

ofl
ow

s

Coflow Width (Number of Flows

(a) Coflow length

CDF
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.4

0

0.2

0.4

0.6

0.8

1

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Fr
ac

. o
f C

ofl
ow

s

Coflow Length (Bytes)

0

0.2

0.4

0.6

0.8

1

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Fr
ac

. o
f C

ofl
ow

s

Coflow Width (Number of Flows)

(b) Coflow width
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
0.81
0.82

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

Fr
ac

. o
f C

ofl
ow

s

Coeff. of Variation of the Number of Flows
(c) Coflow skew

0

0.2

0.4

0.6

0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f C

ofl
ow

s

Coflow Size (Bytes)

0

0.2

0.4

0.6

0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f T

ot
al

 B
ht

es
fr

om
 A

ll
C

ofl
ow

s

Coflow Size (Bytes)

(d) Coflow size

8
Coeff. of Variation of the Number of Flows

0

0.2

0.4

0.6

0.8

1

0 1 10 100

Fr
ac

. o
f C

ofl
ow

s

Sender-to-Receiver Ratio

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

Fr
ac

. o
f C

ofl
ow

s

Sender-to-Receiver Ratio
(e) Coflow bottlenecks

0

0.2

0.4

0.6

0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f C

ofl
ow

s

Coflow Size (Bytes)

0

0.2

0.4

0.6

0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f T

ot
al

 B
ht

es
fr

om
 A

ll
C

ofl
ow

s

Coflow Size (Bytes)

(f) Coflow footprint

Figure A.2: Coflows in production vary widely in their (a) lengths, (b) widths, (c) skews of flow
sizes, (d) total sizes, and (e) bottleneck locations. Moreover, (f) numerous small coflows contribute
to a small fraction of network footprint.

The key takeaway from the CDF plots in Figure A.2 is that coflows vary widely in all four
characteristics. We observe that while almost 60% coflows are short (≤1 MB in length), flows
in some coflows can be very large. Similarly, more than 50% coflows are narrow (with at most
50 flows), but they reside with coflows that consist of millions of flows. Furthermore, we see

APPENDIX A. COFLOWS IN PRODUCTION 138

0

50

100

150

200

12:00 AM 6:00 AM 12:00 PM 6:00 PM

N
um

be
r

of
 A

ct
iv

e
C

ofl
ow

s

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

12:00 AM 6:00 AM 12:00 PM 6:00 PM
N

um
be

r
of

 A
ct

iv
e

Fl
ow

s

(a) Coflows over time

0

50

100

150

200

12:00 AM 6:00 AM 12:00 PM 6:00 PM

N
um

be
r

of
 A

ct
iv

e
C

ofl
ow

s

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

12:00 AM 6:00 AM 12:00 PM 6:00 PM

N
um

be
r

of
 A

ct
iv

e
Fl

ow
s

(b) Flows over time

Figure A.3: Upper bounds on the numbers of concurrent coflows and flows throughout one day.
Time is in GMT.

variations of flow sizes within the same coflow (Figure A.2c), which underpins the improvements
from inter-coflow scheduling – the skew or slack in one coflow allows scheduling another coflow
without impacting the performance of the prior one. Note that we rounded up flow sizes to 1 MB
to calculate skew in Figure A.2c to ignore small variations.

Identifying bottlenecks and exploiting them is the key to improvements. Figure A.2e shows that
the ratio of sender and receiver ports/machines1 can be very different across coflows, and senders
can be bottlenecks in almost a quarter of the coflows.

We found that length and width of a coflow have little correlation; a coflow can have many
small flows as well as few large flows. However, as Figure A.2b and Figure A.2c suggest, width
and skew are indeed correlated – as width increases, the probability of variations among flows
increases as well. We also observed large variation in coflow size (Figure A.2d).

1One machine can have multiple tasks of the same coflow.

APPENDIX A. COFLOWS IN PRODUCTION 139

A.3.2 Heavy-Tailed Distribution of Coflow Size
Data-intensive jobs in production clusters are known to follow heavy-tailed distributions in terms
of their number of tasks, size of input, and output size [39, 63]. We observe the same for coflow
size as well. Figure A.2f presents the fraction of total coflows contributed by coflows of different
size. Comparing it with Figure A.2d, we see that almost all traffic are generated by a handful of
large coflows – 98% (99.6%) of the relevant bytes belong to only 8% (15%) of the coflows that are
more than 10 GB (1 GB) in size.

A.4 Coflow Arrival Over Time and Concurrency
Coflows arrive over time as users submit new jobs, and inter-coflow scheduling is useful only in
the presence of multiple coflows at the same time. As the number of coexisting coflows increases,
opportunities for improving the average CCT increase as well.

Figure A.3 shows upper-bounds on the number of coflows (shuffles) and flows (generated from
those shuffles) over time. There are upper-bounds because we count the total number of coflows
(or flows) in the entire cluster, even though there can be groups of coflows (or flows) without any
spatially overlap at all. Because of the diversity in coflow structures, we see that the number of
coflows and flows are not necessarily correlated. Furthermore, throughout the trace we observed
only a few hundred shuffles active at the same time.

140

Appendix B

Clairvoyant Inter-Coflow Scheduling

B.1 Problem Formulation and Complexity in the Offline Case
Each coflow C(D) is a collection of flows over the datacenter backplane with P ingress and P
egress ports, where the P × P matrix D = [dij]P×P represents the structure of C. For each non-
zero element dij ∈ D, a flow fij transfers dij amount of data from the ith ingress port (P in

i) to
the jth egress port (Pout

j) across the backplane at rate rij , which is determined by the scheduling
algorithm. Assume that there are no other constraints besides physical limits such as port capacity.

If Ck represents the time for all flows of the kth coflow to finish and rkij(t) the bandwidth
allocated to fij of the kth coflow at time t, the objective of minimizing CCT (O(.)) in the offline
case can be represented as follows.

Minimize
K∑
k=1

Ck (B.1)

Subject to
∑
j′,k

rkij′(t) ≤ 1 ∀t, i (B.2)∑
i′,k

rki′j(t) ≤ 1 ∀t, j (B.3)

Ck∑
t=1

rkij(t) ≥ dkij ∀i, j, k (B.4)

The first two inequalities are the capacity constraints on ingress and egress ports. The third in-
equality ensures that all flows of the kth coflow finish by time Ck.

By introducing a binary variable Uk to denote whether a coflow finished within its deadlineDk,
we can express the objective of maximizing the number of coflows that meet their deadlines (Z(.))

APPENDIX B. CLAIRVOYANT INTER-COFLOW SCHEDULING 141

in the offline case as follows.

Maximize
K∑
k=1

Uk (B.5)

Subject to inequalities (B.2), (B.3), and (B.4);

Where Uk =

{
1 Ck ≤ Dk

0 Ck > Dk

The non-trivial nature of inequality (B.4) and the time-dependent formulation make these opti-
mizations less amenable to standard approaches (e.g., relaxation and rounding). Indeed, optimizing
either objective (O or Z) is NP-hard.

Theorem B.1.1 Even under the assumptions of Section 5.5.1, optimizing O or Z in the offline case
is NP-hard for all P ≥ 2.

Proof Sketch We reduce the NP-hard concurrent open shop scheduling problem [180] to the
coflow scheduling problem. Consider a network fabric with only 2 ingress and egress ports (P = 2)
and all links have the same capacity (without loss of generality, we can let this capacity be 1). Since
there are only 2 ports, all coflows are of the formC(D), where D = (dij)

2
i,j=1 is a 2×2 data matrix.

Suppose that n coflows arrive at time 0, and let Dk = (dkij)
2
i,j=1 be the matrix of the kth coflow.

Moreover, assume for all k, dkij = 0 if i = j. In other words, every coflow only consists of 2 flows,
one sending data from ingress port P in

1 to egress port Pout
2 , and the other sending from ingress

port P in
2 to egress port Pout

1 .
Consider now an equivalent concurrent open shop scheduling problem with 2 identical ma-

chines (hence the same capacity). Suppose n jobs arrive at time 0, and the kth job has dk12 amount
of work for machine 1 and dk21 for machine 2. Since this is NP-hard [180], the coflow scheduling
problem described above is NP-hard as well. �

Remark B.1.2 Given the close relationship between concurrent open shop scheduling and coflow
scheduling, it is natural to expect that techniques to express concurrent open shop scheduling as
a mixed-integer program and using standard LP relaxation techniques to derive approximation
algorithms [149,180] would readily extend to our case. However, they do not, because the coupled
constraints (B.2) and (B.3) make permutation schedules sub-optimal (Theorem B.3.1).

B.2 Tradeoffs in Optimizing CCT
With Work Conservation Consider Figure B.1a. Coflows C1 and C2 arrive at time 0 with one
and two flows, respectively. Each flow transfers unit data. C3 arrives one time unit later and uses a
single flow to send 0.5 data unit. Figure B.1b shows the work-conserving solution, which finishes in
2 time units for an average CCT of 1.67 time units. The optimal solution (Figure B.1c), however,
takes 2.5 time units for the same amount of data (i.e., it lowers utilization); still, it has a 1.11×
lower average CCT (1.5 time units).

APPENDIX B. CLAIRVOYANT INTER-COFLOW SCHEDULING 142

1 1

2

1

2

1

1
½

C1, C2 arrive at time 0

C3 arrives at time 1

All coflows end

2

P2

P1

Time
12

P2

P1

Time
1

C1 ends C2

2½

C3

(a) Input

1 1

2

1

2

1

1
½

C1, C2 arrive at time 0

C3 arrives at time 1

All coflows end

2

P2

P1

Time
12

P2

P1

Time
1

C1 ends C2

2½

C3

(b) Work-conserving

1 1

2

1

2

1

1
½

C1, C2 arrive at time 0

C3 arrives at time 1

All coflows end

2

P2

P1

Time
12

P2

P1

Time
1

C1 ends C2

2½

C3

(c) Optimal CCT

Figure B.1: Allocation of ingress port capacities (vertical axis) for the coflows in (a) on a 2 × 2
datacenter fabric for (b) a work-conserving and (c) a CCT-optimized schedule. Although the former
schedule is work-conserving and achieves higher utilization, the latter has a lower average CCT.

2!

P2!

P1!

Time!

Both coflows end!

1!

1! 1!

2!

1!

2!

1!

1!
1!
(a) Input

2!

P2!

P1!

Time!

Both
coflows

complete
together!

1!

1! 1!

2!

1!

2!

1!

1!
1!

(b) Optimal schedule

2!

P2!

P1!

Time!

Both
coflows

complete
together!

1!

1! 1!

2!

1!

2!

1!

1!
1!

2!

P2!

P1!

Time!
1!

(c) Varys

Figure B.2: Flow-interleaved allocation of egress port capacities (vertical axis) for the coflows in
(a) for CCT-optimality (b).

With Avoiding Starvation The tradeoff between minimum completion time and starvation is
well-known for flows (tasks) on individual links (machines) – longer flows starve if a continuous
stream of short flows keep arriving. Without preemption, however, short flows would suffer head-
of-line blocking, and the average FCT will increase. The same tradeoff holds for coflows, because
the datacenter fabric and coflows generalize links and flows, respectively.

B.3 Ordering Properties of Coflow Schedules
Theorem B.3.1 Permutation schedule is not optimal for minimizing the average CCT.

Proof Sketch Both permutation schedules –C1 beforeC2 andC2 beforeC1 – would be suboptimal
for the example in Figure B.2a. �

APPENDIX B. CLAIRVOYANT INTER-COFLOW SCHEDULING 143

Remark B.3.2 In Varys, SEBF would scheduleC1 beforeC2 (arbitrarily breaking the tie); iterative
MADD will allocate the minimum bandwidth to quickly finish C1, and then give the remaining
bandwidth to C2 (Figure B.2c). The average CCT will be the same as the optimal for this example.

144

Appendix C

Non-Clairvoyant Inter-Coflow Scheduling

C.1 Coflow Scheduling with Local Knowledge
Theorem C.1.1 Any coflow scheduling algorithm where schedulers do not coordinate, has a worst-
case approximation ratio of Ω(

√
n) for n concurrent coflows.

Proof Sketch Consider n coflows C1, . . . , Cn and a network fabric with m ≤ n input/output ports
P1, P2, . . . , Pm. Let us define dki,j as the amount of data the kth coflow transfers from the ith input
port to the jth output port.

For each input and output port, consider one coflow with just one flow that starts from that input
port or is destined for that output port; i.e., for all coflows Ck, k ∈ [1,m], let dkk,m−k+1 = 1 and
dki,j = 0 for all i 6= k and j 6= m − k + 1. Next, consider the rest of the coflows to have exactly k
flows that engage all input and output ports of the fabric; i.e., for all coflows Ck, k ∈ [m+ 1, n], let
dki,m−i+1 = 1 for all i ∈ [1,m] and dkl,j = 0 for all l 6= i and j 6= m− i+ 1. We have constructed an
instance of distributed order scheduling, where n orders must be scheduled on m facilities [155].
The proof follows from [155, Theorem 5.1 on page 3]. �

C.2 Continuous vs. Discretized Prioritization
We consider the worst-case scenario whenN identical coflows of size S arrive together, each taking
f(S) time to complete. Using continuous priorities, one would emulate a byte-by-byte round-robin
scheduler, and the total CCT (Tcont) would approximate N2f(S).

Using D-CLAS, all coflows will be in the kth priority queue, i.e., Qlo
k ≤ S < Qhi

k . Conse-
quently, Tdisc would be

N2f(Qlo
k) +

N(N + 1)f(S −Qlo
k)

2

where the former term refers to fair sharing until the kth queue and the latter corresponds to FIFO
in the kth queue.

APPENDIX C. NON-CLAIRVOYANT INTER-COFLOW SCHEDULING 145

Even in the worst case, the normalized completion time (Tcont/Tdisc) would approach 2×
from 1× as S increases to Qhi

k starting from Qlo
k .

Note that the above holds only when a coflow’s size accurately predicts it’s completion time,
which might not always be the case [68, §5.3.2]. Deriving a closed-form expression for the general
case remains an open problem.

146

Appendix D

Fair Inter-Coflow Scheduling

D.1 Dual Objectives for Fair Inter-Coflow Scheduling
The two conflicting requirements of fair coflow scheduling can be defined as follows.

1. Utilization:
∑

i∈[1,2P]

∑
k∈[1,M]

cik

2. Isolation guarantee: min
k∈[1,M]

Pk

Given the tradeoff between the two, one can consider one of the two possible optimizations:

O1 Ensure highest utilization, then maximize the isolation guarantee with best effort;

O2 Ensure optimal isolation guarantee, then maximize utilization with best effort.1

O1: Utilization-First In this case, the optimization attempts to maximize the isolation guarantee
across all coflows while keeping the highest network utilization.

Max min
k∈[1,M]

Pk

s.t.
∑

i∈[1,2P]

∑
k∈[1,M]

cik ∈ arg max
∑

i∈[1,2P]

∑
k∈[1,M]

cik
(D.1)

Although this ensures maximum network utilization, isolation guarantee to individual coflows can
be arbitrarily low. This formulation can still be useful in private datacenters [105].

1Maximizing a combination of these two is also an interesting future direction.

APPENDIX D. FAIR INTER-COFLOW SCHEDULING 147

To ensure some isolation guarantee, existing cloud network sharing approaches [46, 124, 140,
171, 172, 179, 184, 202] use a similar formulation:

Maximize
∑

1≤i≤2P

∑
k∈[1,M]

cik

subject to Pk ≥
1

M
, k ∈ [1,M]

(D.2)

The objective here is to maximize utilization while ensuring at least 1
M

th of each link to Ck. How-
ever, this approach has two drawbacks: suboptimal isolation guarantee and lower utilization (§ 7.4):

O2: Isolation-Guarantee-First Instead, we have formulated the problem as follows:

Maximize
∑

i∈[1,2P]

∑
k∈[1,M]

cik

subject to min
k∈[1,M]

Pk = P∗k

cik ≥ aik, i ∈ [1, 2P], k ∈ [1,M]

(D.3)

Here, we maximize resource consumption while keeping the optimal isolation guarantee across
all coflows, denoted by P∗k . Meanwhile, the constraint on consumption being at least guaranteed
minimum allocation ensures strategy-proofness; thus, ensuring that guaranteed allocated resources
will be utilized.

Because cik values have no upper bounds except for physical capacity constraints, optimiza-
tion O2 may result in suboptimal isolation guarantee in non-cooperative environments (§7.4.3).
HUG introduces the following additional constraint to avoid this issue only in non-cooperative
environments:

cik ≤ P∗, i ∈ [1, 2P], k ∈ [1,M]

This constraint is not necessary when strategy-proofness is a non-requirement – e.g., in private
datacenters.

D.2 Work Conservation VS. Strategy-proofness Tradeoff
We demonstrate the tradeoff between work conservation and strategy-proofness (thus isolation
guarantee) by extending our running example from Section 7.3.

Consider another coflow (CC) with correlation vector
−→
dC = 〈1, 0〉 in addition to the two coflows

present earlier. The key distinction between CC and either of the earlier two is that it does not
demand any bandwidth on link-2. Given the three correlation vectors, we can use DRF to calculate
the optimal isolation guarantee (Figure D.1a), where Ck has Pk = 2

5
, link-1 is completely utilized,

and 7
15

th of link-2 is proportionally divided between CA and CB.
This leaves us with two questions:

APPENDIX D. FAIR INTER-COFLOW SCHEDULING 148

100%

50%

0%
L1 L2

2/5

1/5 2/5

1/15

2/5

100%

50%

0%
L1 L2

1/3

1/3 6/7

1/71/3

100%

50%

0%
L1 L2

1/3

1/3

1/3

100%

50%

0%
L1 L2

1/3

1/3 2/3

1/31/3

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

DRF$/$MinAll$ OPT$

MaxAll$
Equal$

Prop.$

14/15

1/15

100%

50%

0%
L1 L2

2/5

1/5 2/5

1/15

2/5

DRF$/$MinAll$

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

OPT$

(a) DRF

100%

50%

0%
L1 L2

2/5

1/5 2/5

1/15

2/5

100%

50%

0%
L1 L2

1/3

1/3 6/7

1/71/3

100%

50%

0%
L1 L2

1/3

1/3

1/3

100%

50%

0%
L1 L2

1/3

1/3 2/3

1/31/3

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

DRF$/$MinAll$ OPT$

MaxAll$
Equal$

Prop.$

14/15

1/15

100%

50%

0%
L1 L2

2/5

1/5 2/5

1/15

2/5

DRF$/$MinAll$

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

OPT$
(b) HUG

Figure D.1: Hard tradeoff between work conservation and strategy-proofness. Adding one more
coflow (CC in black) to Figure 7.4 with correlation vector 〈1, 0〉 makes simultaneously achieving
work conservation and optimal isolation guarantee impossible, even when all three coflows have
elastic demands.

100%

50%

0%
L1 L2

1/3

1/3 1/2

1/21/3

PS#P$
(a) PS-P

100%

50%

0%
L1 L2

1/3

1/3 6/7

1/71/3

100%

50%

0%
L1 L2

1/3

1/3

1/3

100%

50%

0%
L1 L2

1/3

1/3 2/3

1/31/3

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

OPT$

MaxAll$
Equal$

Prop.$

14/15

1/15

100%

50%

0%
L1 L2

2/5

1/5 2/5

1/15

2/5

DRF$/$MinAll$

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

OPT$

(b) Most-demanding gets all

100%

50%

0%
L1 L2

1/3

1/3 3/5

2/51/3

100%

50%

0%
L1 L2

1/3

1/3 4/5

1/51/3

100%

50%

0%
L1 L2

1/3

1/3 2/3

1/31/3

MaxAll&

Prop&/&CEEI&Equal&
(c) Equal division

100%

50%

0%
L1 L2

1/3

1/3 6/7

1/71/3

100%

50%

0%
L1 L2

1/3

1/3

1/3

100%

50%

0%
L1 L2

1/3

1/3 2/3

1/31/3

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

OPT$

MaxAll$
Equal$

Prop.$

14/15

1/15

100%

50%

0%
L1 L2

2/5

1/5 2/5

1/15

2/5

DRF$/$MinAll$

100%

50%

0%
L1 L2

2/5

1/5 2/5

2/5
2/5

OPT$

(d) Proportional division

Figure D.2: Allocations after applying different work-conserving policies to divide spare band-
width in link-2 for the example in Figure D.1.

1. How do we completely allocate the remaining 8
15

th bandwidth of link-2?

2. Is it even possible without sacrificing optimal isolation guarantee and strategy-proofness?

We show in the following that it is indeed not possible to allocate more than 4
5
th of link-2 (Fig-

ure D.1b) without sacrificing the optimal isolation guarantee.

APPENDIX D. FAIR INTER-COFLOW SCHEDULING 149

Let us consider three primary categories of work conservation policies: demand-agnostic, un-
fair, and locally fair. All three will result in lower isolation guarantee, lower utilization, or both.

D.2.1 Demand-Agnostic Policies
Demand-agnostic policies equally divide the resource between the number of coflows indepen-
dently in each link, irrespective of coflow demands, and provide isolation. Although strategyproof,
this allocation (Figure D.2a) has lower isolation guarantee (PA = 1

2
and PB = PC = 1

3
, there-

fore isolation guarantee is 1
3
) than the optimal isolation guarantee allocation shown in Figure D.1a

(PA = PB = PC = 2
5
, therefore isolation guarantee is 2

5
). PS-P [124,171,172] fall in this category.

Worse, when coflows do not have elastic-demand applications, demand-agnostic policies are
not even work-conserving (similar to the example in §7.4.4).

Lemma D.2.1 When coflows do not have elastic demands, per-resource equal sharing is not work-
conserving.

Proof Sketch Only 11
12

th of link-1 and 5
9
th of link-2 will be consumed; i.e., none of the links will

be saturated! �

To be work-conserving, PS-P suggests dividing spare resources based on whoever wants it.

Lemma D.2.2 When coflows do not have elastic demands, PS-P is not work-conserving.

Proof Sketch If CB gives up its spare allocation in link-2, CA can increase its progress to PA = 2
3

and saturate link-1; however, CB and CC will remain at PB = PC = 1
3
. If CA gives up its spare

allocation in link-1, CB and CC can increase their progress to PB = PC = 3
8

and saturate link-1,
but CA will remain at PA = 1

2
. Because both CA and CB have chances of increasing their progress,

both will hold off to their allocations even with useless traffic – another instance of Prisoner’s
dilemma. �

D.2.2 Unfair Policies
Instead of demand-agnostic policies, one can also consider simpler, unfair policies; e.g., allocating
all the resources to the coflow with the least or the most demand.

Lemma D.2.3 Allocating spare resource to the coflow with the least demand can result in zero
spare allocation.

Proof Sketch Although this strategy provides the optimal allocation for Figure 7.4, when at least
one coflow in a link has zero demand, it can trivially result in no additional utilization; e.g., CC in
Figure D.1. �

Lemma D.2.4 Allocating spare resource to the coflow with the least demand is not strategyproof.

APPENDIX D. FAIR INTER-COFLOW SCHEDULING 150

Proof Sketch Consider CA lied and changed its correlation vector to
−→
d′A = 〈1, 1

10
〉. The new

optimal isolation guarantee allocation for unchanged CB and CC correlation vectors would be:
−→aA = 〈1

3
, 1
30
〉, −→aB = 〈1

3
, 1
15
〉, and −→aC = 〈1

3
, 0〉. Now the spare resource in link-2 will be allocated to

CA because it asked for the least amount, and its final allocation would be
−→
a′A = 〈1

3
, 14
15
〉. As a result,

its progress improved from PA = 2
5

to P ′A = 2
3
, while the others’ decreased to PB = PC = 1

3
. �

Corollary D.2.5 (of Lemma D.2.4) In presence of work conservation, coflows can lie both by in-
creasing and decreasing their demands, or a combination of both.

Lemma D.2.6 Allocating spare resource to the coflow with the highest demand is not strate-
gyproof.

Proof Sketch If CA changes its demand vector to
−→
d′A = 〈1, 1〉, the eventual allocation (Fig-

ure D.2b) will again result in lower progress (PB = PC = 1
3
). Because CB is still receiving

more than 1
6
th of its allocation in link-1 in link-2, it does not need to lie. �

Corollary D.2.7 (of Lemmas D.2.4, D.2.6) Allocating spare resource randomly to coflows is not
strategyproof.

D.2.3 Locally Fair Policies
Finally, one can also consider equally or proportionally dividing the spare resource on link-2 be-
tween CA and CB. Unfortunately, these strategies are not strategyproof either.

Lemma D.2.8 Allocating spare resource equally to coflows is not strategyproof.

Proof Sketch If the remaining 8
15

th of link-2 is equally divided, the share of CA will increase to
2
3
-rd and incentivize its to lie. Again, the isolation guarantee will be smaller (Figure D.2c). �

Lemma D.2.9 Allocating spare resource proportionally to coflows’ demands is not strategyproof.

Proof Sketch If one divides the spare in proportion to coflow demands, the allocation is different
(Figure D.2d) than equal division; yet, CA can still increase its progress at the expense of others.�

D.3 Properties of HUG
Lemma D.3.1 Any work conservation policy that assigns spare resources such that the allocation
of a coflow in any link including the spare can be more than its allocated resource on the bottleneck
link based on its reported correlation vector is not strategyproof.

APPENDIX D. FAIR INTER-COFLOW SCHEDULING 151

Proof Sketch (of Lemma D.3.1) Consider CA from the example in Figure 7.4. Assume that in-
stead of reporting its true correlation vector

−→
dA = 〈1

2
, 1〉, it reports

−→
d′A = 〈1

2
+ ε, 1〉, where ε > 0.

As a result, its allocation will change to
−→
a′A = 〈1/2+ε

3/2+ε
, 1
3/2+ε
〉. Its allocation in link-1

(
1/2+ε
3/2+ε

)
is al-

ready larger than before
(
1
3

)
. If the work conservation policy allocates the spare resource in link-2

by δ (δ may be small but a positive value), its progress will change to P ′A = min
(
a′1A
d1A
, a

′2
A

d2A

)
=

min
(

1+2ε
3/2+ε

, 1
3/2+ε

+ δ
)

. As long as ε < 3/2δ
2/3−δ (if δ ≥ 2

3
, we have no constraint on ε), its progress

will be better than when it was telling the truth, which makes the policy not strategyproof. The
operator cannot prevent this because it knows neither a coflow’s true correlation vector nor ε, the
extent of the coflow’s lie. �

Corollary D.3.2 (of Lemma D.3.1) Optimal isolation guarantee allocations cannot always be
work-conserving even in the presence of elastic-demand applications.

Theorem D.3.3 Algorithm 6 is strategyproof.

Proof Sketch (of Theorem D.3.3) Because DRF is strategyproof, the first stage of Algorithm 6 is
strategyproof as well. We show that adding the second stage does not violate strategy-proofness of
the combination.

Assume that link-b is a system bottleneck – the link DRF saturated to maximize isolation

guarantee in the first stage. Meaning, b = arg max
i

M∑
k=1

dik. We use Db =
M∑
k=1

dbk to denote the total

demand in link-b (Db ≥ 1), and Pbk = 1/Db for corresponding progress for all Ck (k ∈ {1, ...,M})
when link-b is the system bottleneck. In Figure 7.4, b = 1. The following arguments hold even for
multiple bottlenecks.

Any Ck can attempt to increase its progress (Pk) only by lying about its correlation vector
(
−→
dk). Formally, its action space consists of all possible correlation vectors. It includes increasing

and/or decreasing demands of individual resources to report a different vector,
−→
d′k and obtain a new

progress, P ′k(> Pk). Ck can attempt one of the two alternatives when reporting
−→
d′k : either keep

link-b still the system bottleneck or change it. We show that Algorithm 6 is strategyproof in both
cases; i.e., P ′k ≤ Pk.

Case 1: link-b is still the system bottleneck.
Its progress cannot improve because

• if d′bk ≤ dbk, its share on the system bottleneck will decrease in the first stage; so will its
progress. There is no spare resource to allocate in link-b.

For example, if CA changes d′1A = 1
4

instead of d1A = 1
2

in Figure 7.4, its allocation will decrease to
1
5
th of link-1; hence, P ′A = 2

5
instead of PA = 2

3
.

• if d′bk > dbk, its share on the system bottleneck will increase. However, because D′b > Db

as d′bk > dbk, everyone’s progress including its own will decrease in the first stage (P ′bk ≤ Pbk). The

APPENDIX D. FAIR INTER-COFLOW SCHEDULING 152

second stage will ensure that its maximum consumption in any link-i c′ik ≤ maxj
{
a′jk
}

. Therefore
its progress will be smaller than that when it tells the truth (P ′bk < Pbk).

For example, if CA changes d′1A = 1 instead of d1A = 1
2

in Figure 7.4, its allocation will increase
to 1

2
of link-1. However, progress of both coflows will decrease: PA = PB = 1

2
. The second stage

will restrict its usage in link-2 to 1
2

as well; hence, P ′A = 1
2

instead of PA = 2
3
.

Case 2: link-b is no longer a system bottleneck; instead, link-b′ (6= b) is now one of the system
bottlenecks.

We need to consider the following two sub-cases.

• If D′b′ ≤ Db, the progress in the first stage will increase; i.e., P ′b′k ≥ Pbk. However, Ck’s
allocation in link-bwill be no larger than if it had told the truth, making its progress no better. To see
this, consider the allocations of all other coflows in link-b before and after it lies. Denote by cb−k and
c′b−k the resource consumption of all other coflows in link-bwhen Ck was telling the truth and lying,
respectively. We also have cb−k = ab−k and ab−k+abk = 1 because link-bwas the bottleneck, and there
was no spare resource to allocate for this link. When Ck lies, a′b−k ≥ ab−k because P ′b′k ≥ Pbk. We
also have c′b−k ≥ a′b−k and c′b−k+c′bk ≤ 1. This implies c′bk ≤ 1−c′b−k ≤ 1−a′b−k ≤ 1−ab−k = abk = cbk.
Meaning, Ck’s progress is no larger than that when it was telling the truth.

• If D′b′ > Db, everyone’s progress including its own decreases in the first stage (P ′b′k < Pbk).
Similar to the second scenario in Case 1, the second stage will restrict Ck to the lowered progress.

Regardless of Ck’s approaches – keeping the same system bottleneck or not – its progress using
Algorithm 6 will not increase. �

Corollary D.3.4 (of Theorem D.3.3) Algorithm 6 maximizes isolation guarantee, i.e., the mini-
mum progress across coflows.

Theorem D.3.5 Algorithm 6 achieves the highest resource utilization among all strategyproof al-
gorithms that provide optimal isolation guarantee among coflows.

Proof Sketch (of Theorem D.3.5) Follows from Lemma D.3.1 and Theorem D.3.3. �

Lemma D.3.6 Under some cases, DRF may have utilization arbitrarily close to 0, and HUG helps
improve the utilization to 1.

Proof Sketch (of Lemma D.3.6) Construct the cases withK links andN coflows, and each coflow
has demand 1 on link-1 and ε on other links.

DRF will allocate to each coflow 1
N

on link-1 and ε
N

on all other links, resulting in a total
utilization of 1+(K−1)ε

K
→ 0 when K →∞, ε→ 0 for any N .

HUG will allocate to each coflow 1
N

on every link and achieve 100% utilization. �

153

Bibliography

[1] Akka. http://akka.io.

[2] Amazon CloudWatch. http://aws.amazon.com/cloudwatch.

[3] Amazon EC2. http://aws.amazon.com/ec2.

[4] Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/.

[5] Apache Giraph. http://giraph.apache.org.

[6] Apache Hadoop. http://hadoop.apache.org.

[7] Apache Hama. http://hama.apache.org.

[8] Apache Hive. http://hive.apache.org.

[9] Apache Tez. http://tez.apache.org.

[10] BitTornado. http://www.bittornado.com.

[11] Databricks Cloud. http://databricks.com/cloud.

[12] DETERlab. http://www.isi.deterlab.net.

[13] Fragment Replicate Join – Pig wiki. http://wiki.apache.org/pig/PigFRJoin.

[14] Google Cloud Dataflow. https://cloud.google.com/dataflow.

[15] Google Compute Engine. https://cloud.google.com/compute.

[16] Google Container Engine. http://kubernetes.io.

[17] Impala performance update: Now reaching DBMS-class speed. http://blog.cloudera.
com/blog/2014/01/impala-performance-dbms-class-speed.

[18] Kryo serialization library. https://github.com/EsotericSoftware/kryo.

[19] LANTorrent. http://www.nimbusproject.org.

http://akka.io
http://aws.amazon.com/cloudwatch
http://aws.amazon.com/ec2
http://aws.amazon.com/elasticmapreduce/
http://giraph.apache.org
http://hadoop.apache.org
http://hama.apache.org
http://hive.apache.org
http://tez.apache.org
http://www.bittornado.com
http://databricks.com/cloud
http://www.isi.deterlab.net
http://wiki.apache.org/pig/PigFRJoin
https://cloud.google.com/dataflow
https://cloud.google.com/compute
http://kubernetes.io
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed
https://github.com/EsotericSoftware/kryo
http://www.nimbusproject.org

BIBLIOGRAPHY 154

[20] Microsoft Azure. http://azure.microsoft.com.

[21] Murder. http://github.com/lg/murder.

[22] Presto. https://prestodb.io.

[23] Storm: Distributed and fault-tolerant realtime computation. http://storm-project.net.

[24] The Berkeley Data Analytics Stack (BDAS). https://amplab.cs.berkeley.edu/

software/.

[25] TPC Benchmark DS (TPC-DS). http://www.tpc.org/tpcds.

[26] TPC-DS kit for Impala. https://github.com/cloudera/impala-tpcds-kit.

[27] Trident: Stateful stream processing on Storm. http://storm.apache.org/

documentation/Trident-tutorial.html.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[29] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly. Symbiotic routing in
future data centers. In SIGCOMM, 2010.

[30] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. Reoptimizing data
parallel computing. In NSDI, 2012.

[31] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB: Queries
with bounded errors and bounded response times on very large data. In EuroSys, 2013.

[32] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,
D. Mills, P. Nordstrom, and S. Whittle. MillWheel: Fault-tolerant stream processing at
Internet scale. VLDB, 2013.

[33] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic
flow scheduling for data center networks. In NSDI, 2010.

[34] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus,
R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed congestion-aware load balancing
for datacenters. In SIGCOMM, 2014.

http://azure.microsoft.com
http://github.com/lg/murder
https://prestodb.io
http://storm-project.net
https://amplab.cs.berkeley.edu/software/
https://amplab.cs.berkeley.edu/software/
http://www.tpc.org/tpcds
https://github.com/cloudera/impala-tpcds-kit
http://storm.apache.org/documentation/Trident-tutorial.html
http://storm.apache.org/documentation/Trident-tutorial.html

BIBLIOGRAPHY 155

[35] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data Center TCP (DCTCP). In SIGCOMM, 2010.

[36] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more:
Trading a little bandwidth for ultra-low latency in the data center. In NSDI, 2012.

[37] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. Mckeown, B. Prabhakar, and S. Shenker.
pFabric: Minimal near-optimal datacenter transport. In SIGCOMM, 2013.

[38] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Disk-locality in datacenter
computing considered irrelevant. In HotOS, 2011.

[39] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker, and
I. Stoica. PACMan: Coordinated memory caching for parallel jobs. In NSDI, 2012.

[40] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris.
Reining in the outliers in mapreduce clusters using Mantri. In OSDI, 2010.

[41] S. Angel, H. Ballani, T. Karagiannis, G. OShea, and E. Thereska. End-to-end performance
isolation through virtual datacenters. In OSDI, 2014.

[42] J. Arjona Aroca and A. Fernández Anta. Bisection (band)width of product networks
with application to data centers. IEEE Transactions on Parallel and Distributed Systems,
25(3):570–580, 2014.

[43] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.
Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational data processing in Spark. In
SIGMOD, 2015.

[44] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Scheduling: The multi-level feedback
queue. In Operating Systems: Three Easy Pieces. 2014.

[45] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-agnostic flow
scheduling for commodity data centers. In NSDI, 2015.

[46] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable datacenter
networks. In SIGCOMM, 2011.

[47] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and G. OShea. Chatty tenants
and the cloud network sharing problem. In USENIX NSDI, pages 171–184, 2013.

[48] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as a computer: An introduction
to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture,
8(3):1–154, 2013.

[49] J. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In INFOCOM,
pages 120–128, 1996.

BIBLIOGRAPHY 156

[50] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the
wild. In IMC, 2010.

[51] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine grained traffic engineering
for data centers. In CoNEXT, 2011.

[52] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian. Traffic classification
on the fly. SIGCOMM CCR, 36(2):23–26, 2006.

[53] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and I. Stoica. Hierar-
chical scheduling for diverse datacenter workloads. In SoCC, 2013.

[54] P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. Maltz, and I. Stoica. Surviving failures
in bandwidth-constrained datacenters. In SIGCOMM, 2012.

[55] D. Borthakur. The Hadoop distributed file system: Architecture and design. Hadoop Project
Website, 2007.

[56] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. Ethane: Taking
control of the enterprise. In SIGCOMM, 2007.

[57] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
stream: High-bandwidth multicast in cooperative environments. In SOSP, 2003.

[58] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE:
Easy and efficient parallel processing of massive datasets. In VLDB, 2008.

[59] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and N. Weizen-
baum. FlumeJava: Easy, efficient data-parallel pipelines. In PLDI, 2010.

[60] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. V. Vasilakos. Survey on routing in
data centers: Insights and future directions. IEEE Network, 25(4):6–10, 2011.

[61] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen.
OSA: An optical switching architecture for data center networks with unprecedented flexi-
bility. In NSDI, 2012.

[62] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding TCP incast
throughput collapse in datacenter networks. In WREN, 2009.

[63] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging endpoint flexibility in data-intensive
clusters. In SIGCOMM, 2013.

[64] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: Multi-resource fairness for corre-
lated and elastic demands. In NSDI, 2016.

BIBLIOGRAPHY 157

[65] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for cluster applications. In
HotNets, 2012.

[66] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior knowledge. In
SIGCOMM, 2015.

[67] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing data transfers in
computer clusters with Orchestra. In SIGCOMM, 2011.

[68] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with Varys. In SIG-
COMM, 2014.

[69] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal,
32(2):406–424, 1953.

[70] E. G. Coffman and L. Kleinrock. Feedback queueing models for time-shared systems. Jour-
nal of the ACM, 15(4):549–576, 1968.

[71] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economics of Peer-to-
Peer systems, 2003.

[72] B. Cohen. The BitTorrent protocol specification, 2008.

[73] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein. MapReduce online. In NSDI, 2010.

[74] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An experimental time-sharing system.
In Spring Joint Computer Conference, pages 335–344, 1962.

[75] R. Cruz. A calculus for network delay, Part I: Network elements in isolation. IEEE Trans-
actions on Information Theory, 37(1):114–131, 1991.

[76] R. Cruz. A calculus for network delay, Part II: Network analysis. IEEE Transactions on
Information Theory, 37(1):132–141, 1991.

[77] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
OSDI, 2004.

[78] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware scheduling for heterogeneous data-
centers. In ASPLOS, 2013.

[79] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware cluster man-
agement. In ASPLOS, 2014.

[80] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.
In SIGCOMM, 1989.

BIBLIOGRAPHY 158

[81] C. Diot, W. Dabbous, and J. Crowcroft. Multipoint communication: A survey of proto-
cols, functions, and mechanisms. IEEE Journal on Selected Areas in Communications,
15(3):277–290, 1997.

[82] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized task-aware scheduling
for data center networks. In SIGCOMM, 2014.

[83] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial. No justified com-
plaints: On fair sharing of multiple resources. In ITCS, 2012.

[84] B. Donnet, B. Gueye, and M. A. Kaafar. A Survey on Network Coordinates Systems, De-
sign, and Security. IEEE Communication Surveys and Tutorials, 12(4), Oct. 2010.

[85] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast remote memory. In
NSDI, 2014.

[86] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der
Merive. A flexible model for resource management in virtual private networks. In SIG-
COMM, 1999.

[87] N. Dukkipati. Rate Control Protocol (RCP): Congestion control to make flows complete
quickly. PhD thesis, Stanford University, 2007.

[88] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman,
G. Papen, and A. Vahdat. Helios: A hybrid electrical/optical switch architecture for modular
data centers. In SIGCOMM, 2011.

[89] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi. Participatory net-
working: An API for application control of SDNs. In SIGCOMM, 2013.

[90] M. M. Flood. Some experimental games. Management Science, 5(1):5–26, 1958.

[91] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet net-
works. IEEE/ACM Transactions on Networking, 3(4):365–386, 1995.

[92] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8(3):399–404, 1956.

[93] C. Fraley and A. Raftery. MCLUST Version 3 for R: Normal mixture modeling and model-
based clustering. Technical Report 504, Department of Statistics, University of Washington,
Sept. 2006.

[94] P. Ganesan and M. Seshadri. On cooperative content distribution and the price of barter. In
ICDCS, 2005.

[95] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In SOSP, 2003.

BIBLIOGRAPHY 159

[96] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource fair queueing for packet
processing. SIGCOMM, 2012.

[97] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple resource types. In NSDI, 2011.

[98] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda,
Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine learning on mapreduce.
In ICDE, 2011.

[99] C. Gkantsidis, T. Karagiannis, and M. VojnoviC. Planet scale software updates. In SIG-
COMM, 2006.

[100] S. J. Golestani. Network delay analysis of a class of fair queueing algorithms. IEEE JSAC,
13(6):1057–1070, 1995.

[101] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. GraphX:
Graph processing in a distributed dataflow framework. In OSDI, 2014.

[102] P. Goyal, H. M. Vin, and H. Chen. Start-time fair queueing: A scheduling algorithm for
integrated services packet switching networks. In SIGCOMM, 1996.

[103] R. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

[104] R. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Math-
ematics, 17(2):416–429, 1969.

[105] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource pack-
ing for cluster schedulers. In SIGCOMM, 2014.

[106] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,
and S. Sengupta. VL2: A scalable and flexible data center network. In SIGCOMM, 2009.

[107] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan,
and H. Zhang. A clean slate 4D approach to network control and management. SIGCOMM
CCR, 35:41–54, 2005.

[108] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube:
A High Performance, Server-centric Network Architecture for Modular Data Centers. In
SIGCOMM, 2009.

[109] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. SecondNet:
A data center network virtualization architecture with bandwidth guarantees. In CoNEXT,
2010.

BIBLIOGRAPHY 160

[110] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A scalable and fault-tolerant
network structure for data centers. In SIGCOMM, 2008.

[111] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou, S. McDirmid, C. Liu, W. Lin, J. Zhou, and
L. Zhou. Spotting code optimizations in data-parallel pipelines through PeriSCOPE. In
OSDI, 2012.

[112] A. Gutman and N. Nisan. Fair allocation without trade. In AAMAS, 2012.

[113] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and M. Tawar-
malani. Cloudward bound: Planning for beneficial migration of enterprise applications to
the cloud. In SIGCOMM, 2010.

[114] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Augmenting data center
networks with multi-gigabit wireless links. In SIGCOMM, 2011.

[115] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tan-
wer. FireFly: A reconfigurable wireless data center fabric using free-space optics. In SIG-
COMM, 2014.

[116] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. Springer, New York, NY, 2009.

[117] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In
NSDI, 2011.

[118] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with preemptive schedul-
ing. In SIGCOMM, 2012.

[119] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In EuroSys, 2007.

[120] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy: Fair
scheduling for distributed computing clusters. In SOSP, 2009.

[121] J. M. Jaffe. Bottleneck flow control. IEEE Transactions on Communications, 29(7):954–
962, 1981.

[122] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar. Network-aware
scheduling for data-parallel jobs: Plan when you can. In SIGCOMM, 2015.

[123] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Predictable message completion time
in the cloud. In SIGCOMM, 2015.

[124] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and A. Greenberg. EyeQ:
Practical network performance isolation at the edge. In NSDI, 2013.

BIBLIOGRAPHY 161

[125] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multiresource allocation: Fairness-efficiency
tradeoffs in a unifying framework. In INFOCOM, 2012.

[126] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for data centers. In
SIGCOMM, 2008.

[127] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: Responsive yet
stable traffic engineering. In SIGCOMM, 2005.

[128] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of datacenter
traffic: Measurements and analysis. In IMC, 2009.

[129] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the “One Big Switch” abstraction
in Software-Defined Networks. In CoNEXT, 2013.

[130] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: multilevel traffic classification
in the dark. In SIGCOMM, 2005.

[131] J. E. Kelley. Critical-path planning and scheduling: Mathematical basis. Operations Re-
search, 9(3):296–320, 1961.

[132] J. E. Kelley. The critical-path method: Resources planning and scheduling. Industrial
scheduling, 13:347–365, 1963.

[133] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.
In FOCS, 2003.

[134] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers. In HPCA, 2010.

[135] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,
M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pan-
dis, H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL engine for Hadoop. In CIDR, 2015.

[136] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan. MLbase:
A distributed machine-learning system. In CIDR, 2013.

[137] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage University Paper series on
Quantitative Applications in the Social Sciences, 07-001, 1978.

[138] G. Kumar, M. Chowdhury, S. Ratnasamy, and I. Stoica. A case for performance-centric
network allocation. In HotCloud, 2012.

[139] K. LaCurts, J. Mogul, H. Balakrishnan, and Y. Turner. Cicada: Introducing predictive guar-
antees for cloud networks. In HotCloud, 2014.

BIBLIOGRAPHY 162

[140] V. T. Lam, S. Radhakrishnan, A. Vahdat, G. Varghese, and R. Pan. NetShare and Stochastic
NetShare: Predictable bandwidth allocation for data centers. SIGCOMM CCR, 42(3):5–11,
2012.

[141] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma. Application-
driven bandwidth guarantees in datacenters. In SIGCOMM, 2014.

[142] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46(6):787–832, Nov. 1999.

[143] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE
Transactions on Computers, 100(10):892–901, 1985.

[144] J. Y.-T. Leung, H. Li, and M. Pinedo. Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling, 8(5):355–386, 2005.

[145] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable, memory speed
storage for cluster computing frameworks. In SoCC, 2014.

[146] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. GraphLab:
A new framework for parallel machine learning. In UAI, 2010.

[147] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A system for large-scale graph processing. In SIGMOD, 2010.

[148] Y. Mao and L. K. Saul. Modeling Distances in Large-Scale Networks by Matrix Factoriza-
tion. In IMC, 2004.

[149] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimizing the
sum of weighted completion times in a concurrent open shop. Operations Research Letters,
38(5):390–395, 2010.

[150] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow clustering using machine learning
techniques. In PAM. 2004.

[151] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100% throughput
in an input-queued switch. IEEE Transactions on Communications, 47(8):1260 – 1267,
1999.

[152] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and
A. Talwalkar. MLlib: Machine learning in Apache Spark. CoRR, abs/1505.06807, 2015.

[153] J. C. Mogul and L. Popa. What we talk about when we talk about cloud network perfor-
mance. SIGCOMM CCR, 42(5):44–48, 2012.

BIBLIOGRAPHY 163

[154] A. W. Moore and D. Zuev. Internet traffic classification using Bayesian analysis techniques.
33(1):50–60, 2005.

[155] T. Moscibroda and O. Mutlu. Distributed order scheduling and its application to multi-core
DRAM controllers. In PODC, 2008.

[156] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical Computer
Science, 130(1):17–47, 1994.

[157] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely
dataow system. In SOSP, 2013.

[158] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Sub-
ramanya, and A. Vahdat. PortLand: A scalable fault-tolerant layer 2 data center network
fabric. In SIGCOMM, 2009.

[159] J. Nair, A. Wierman, and B. Zwart. The fundamentals of heavy tails: Properties, emergence,
and identification. In SIGMETRICS, 2013.

[160] J. F. Nash Jr. The bargaining problem. Econometrica: Journal of the Econometric Society,
pages 155–162, 1950.

[161] T. T. Nguyen and G. Armitage. A survey of techniques for Internet traffic classification
using machine learning. IEEE Communications Surveys & Tutorials, 10(4):56–76, 2008.

[162] M. Nuyens and A. Wierman. The Foreground–Background queue: A survey. Performance
Evaluation, 65(3):286–307, 2008.

[163] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A not-so-foreign
language for data processing. In SIGMOD, 2008.

[164] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: Distributed, low latency
scheduling. In SOSP, 2013.

[165] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control
in integrated services networks: The single-node case. IEEE/ACM ToN, 1(3):344–357, 1993.

[166] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant resource fairness: Extensions,
limitations, and indivisibilities. In EC, 2012.

[167] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A centralized
“zero-queue” datacenter network. In SIGCOMM, 2014.

[168] R. Peterson and E. G. Sirer. Antfarm: Efficient content distribution with managed swarms.
In NSDI, 2009.

BIBLIOGRAPHY 164

[169] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Extending network-
ing into the virtualization layer. In HotNets 2009.

[170] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming, 13(4), 2005.

[171] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica. Fair-
Cloud: Sharing the network in cloud computing. In SIGCOMM, 2012.

[172] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos. ElasticSwitch:
Practical work-conserving bandwidth guarantees for cloud computing. In SIGCOMM, 2013.

[173] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman,
G. Papen, and A. Vahdat. Integrating microsecond circuit switching into the data center. In
SIGCOMM, 2013.

[174] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, V. Bahl, and I. Stoica. Low
latency geo-distributed data analytics. In SIGCOMM, 2015.

[175] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time of coflows
in datacenter networks. In SPAA, 2015.

[176] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of LAS scheduling for job size
distributions with high variance. ACM SIGMETRICS Performance Evaluation Review,
31(1):218–228, 2003.

[177] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving
datacenter performance and robustness with multipath TCP. In SIGCOMM, 2011.

[178] M. P. Robillard. What makes APIs hard to learn? Answers from developers. IEEE Software,
26(6):27–34, 2009.

[179] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gatekeeper: Supporting
bandwidth guarantees for multi-tenant datacenter networks. In USENIX WIOV, 2011.

[180] T. A. Roemer. A note on the complexity of the concurrent open shop problem. Journal of
Scheduling, 9(4):389–396, 2006.

[181] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: A compiler and
runtime for heterogeneous systems. In SOSP, 2013.

[182] C. Scaffidi. Why are APIs difficult to learn and use? Crossroads, 12(4):4–4, 2006.

[183] S. Shenker, D. D. Clark, and L. Zhang. A scheduling service model and a scheduling archi-
tecture for an integrated services packet network. Technical report, Xerox PARC, 1993.

BIBLIOGRAPHY 165

[184] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Sharing the data center network. In NSDI,
2011.

[185] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. In SIG-
COMM, 1995.

[186] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising: A decade of Clos topologies and central-
ized control in Google’s datacenter network. SIGCOMM, 2015.

[187] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data centers
randomly. In NSDI, 2012.

[188] I. Stoica, H. Zhang, and T. Ng. A hierarchical fair service curve algorithm for link-sharing,
real-time and priority service. In SIGCOMM, 1997.

[189] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-time
URL spam filtering service. In IEEE Symposium on Security and Privacy, 2011.

[190] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An architecture for Internet data
transfer. In NSDI, 2006.

[191] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[192] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter TCP (D2TCP). In
SIGCOMM, 2012.

[193] H. R. Varian. Equity, envy, and efficiency. Journal of economic theory, 9(1):63–91, 1974.

[194] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A.
Gibson, and B. Mueller. Safe and effective fine-grained TCP retransmissions for datacenter
communication. In SIGCOMM, 2009.

[195] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler. Apache Hadoop YARN: Yet another resource negotiator. In SoCC, 2013.

[196] A. Vulimiri, C. Curino, B. Godfrey, J. Padhye, and G. Varghese. Global analytics in the face
of bandwidth and regulatory constraints. In NSDI, 2015.

[197] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share re-
source management. In OSDI, 1994.

[198] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake: Enabling high-level
SLOs on shared storage systems. In SoCC, 2012.

BIBLIOGRAPHY 166

[199] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and M. Ryan.
c-Through: Part-time optics in data centers. In SIGCOMM, 2011.

[200] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never than late: Meeting
deadlines in datacenter networks. In SIGCOMM, 2011.

[201] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast congestion control for TCP in data-
center networks. In CoNEXT, 2010.

[202] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is change: Incorporating
time-varying network reservations in data centers. In SIGCOMM, 2012.

[203] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. Shark: SQL and
rich analytics at scale. In SIGMOD, 2013.

[204] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai. Tesseract: A 4D
network control plane. In NSDI, 2007.

[205] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow scheduling algorithms for grid com-
puting. In Metaheuristics for Scheduling in Distributed Computing Environments, pages
173–214. 2008.

[206] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-
level language. In OSDI, 2008.

[207] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: A simple technique for achieving locality and fairness in cluster scheduling. In
EuroSys, 2010.

[208] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory clus-
ter computing. In NSDI, 2012.

[209] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: Fault-tolerant
stream computation at scale. In SOSP, 2013.

[210] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving MapReduce
performance in heterogeneous environments. In OSDI, 2008.

[211] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail: Reducing the flow completion
time tail in datacenter networks. In SIGCOMM, 2012.

[212] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Li, W. Lin, J. Zhou, and L. Zhou.
Optimizing data shuffling in data-parallel computation by understanding user-defined func-
tions. In NSDI, 2012.

BIBLIOGRAPHY 167

[213] Y. Zhao, K. Chen, W. Bai, C. Tian, Y. Geng, Y. Zhang, D. Li, and S. Wang. RAPIER:
Integrating routing and scheduling for coflow-aware data center networks. In INFOCOM,
2015.

[214] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror
mirror on the ceiling: Flexible wireless links for data centers. In SIGCOMM, 2012.

[215] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering
for the Netflix prize. In AAIM, 2008.

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problems Due to Application-Agnostic Networking
	The Coflow Abstraction
	Scheduling Using Coflows
	Schedulers Proposed in this Dissertation
	Scheduler Architecture

	Summary of Results
	Organization

	Background
	Communication in Distributed Data-Parallel Applications
	MapReduce
	Dataflow Pipelines
	Bulk Synchronous Parallel (BSP)
	Partition-Aggregate
	Summary of Communication Requirements

	Datacenter Networks
	Topologies
	Forwarding, Routing, Load Balancing, and Traffic Engineering
	The Non-Blocking Fabric Model

	Optimizing Communication of Data-Parallel Applications
	Traditional Size- and Deadline-Agnostic Approaches
	Size-Aware Approaches
	Deadline-Aware Approaches
	The Need for Application-Awareness

	Summary

	Coflows and Their Applications
	The Coflow Abstraction
	What is (in) a Coflow?
	Coflow Categories Based on Information Availability
	Objectives
	Composability

	Benefits of Coflows
	Comparison to Per-Flow Fairness
	Comparison to Per-Flow Prioritization

	Summary

	Intra-Coflow Scheduling
	Background
	Solution Outline
	Motivating Applications
	Logistic Regression
	Collaborative Filtering

	The Broadcast Coflow
	Existing Solutions
	Cornet: BitTorrent for Datacenters
	Topology-Aware Cornet
	Size-Aware Broadcast Algorithm Selection

	The Shuffle Coflow
	Bottlenecks and Optimality in Shuffle
	Load Balancing in Current Implementations
	Minimum Allocation for Desired Duration (MADD)

	Evaluation
	Comparison of Broadcast Mechanisms
	Topology-Aware Cornet
	Minimum Allocation for Desired Duration (MADD)
	End-to-End Results on Full Applications

	Related Work
	Summary

	Clairvoyant Inter-Coflow Scheduling
	Background
	Solution Outline
	Potential Benefits of Inter-Coflow Scheduling
	Varys Overview
	Problem Statement
	Architectural Overview

	Clairvoyant Coflow Scheduling: Analytical Results
	Problem Formulation and Complexity
	Desirable Properties and Tradeoffs
	Inter-Coflow Scheduling to Minimize CCT
	Inter-Coflow Scheduling to Guarantee Deadline

	Design Details
	Varys Client Library: The Coflow API
	Inter-Coflow Scheduling in Varys

	Evaluation
	Methodology
	Varys's Performance in Minimizing CCT
	Varys's Performance for Deadline-Sensitive Coflows
	Impact of Preemption
	Impact on Network Utilization
	Impact of Coflow Mix
	Impact of Cluster/Network Load

	Discussion
	Related Work
	Summary

	Non-Clairvoyant Inter-Coflow Scheduling
	Background
	Solution Outline
	Motivation
	Challenges
	Potential Gains

	Aalo Overview
	Problem Statement
	Architectural Overview

	Scheduling Without Prior Knowledge
	Complexity and Desirable Properties
	Priority Discretization
	Tradeoffs in Designing Coflow Schedulers
	Discretized Coflow-Aware Least-Attained Service
	Summary

	Handling Uncertainties
	Multi-Stage Dataflow DAGs
	Dynamic Coflow Modifications

	Design Details
	Pipelined Coflow API
	Coflow Scheduling in Aalo

	Evaluation
	Methodology
	Aalo's Overall Improvements
	Impact of Runtime Dynamics
	Impact on DAG Scheduling
	Sensitivity Analysis
	Aalo's Scalability

	Discussion
	Related Work
	Summary

	Fair Inter-Coflow Scheduling
	Background
	Solution Outline
	Preliminaries
	Assumptions and Notations
	Intra-Coflow Fair Sharing Requirements

	Challenges and Inefficiencies of Existing Solutions
	Full Utilization but Suboptimal Isolation Guarantee
	Optimal Isolation Guarantee but Low Utilization
	Naive Work Conservation Reduces Optimal Isolation Guarantee
	Naive Work Conservation can Even Decrease Utilization
	Summary

	HUG: Analytical Results
	Root Cause of the Tradeoff: Unrestricted Sharing of Spare Resources
	The Optimal Algorithm: HUG
	HUG Properties

	Design Details
	Architectural Overview
	VM Placement and Re-Placement/Migration
	Additional Constraints

	Evaluation
	Methodology
	Benchmarks
	Instantaneous Fairness
	Long-Term Characteristics

	Related Work
	Summary

	Conclusions and Future Work
	Lessons Learned
	Impact
	Theoretical Impact
	Real-World Impact

	Future Work
	Scheduling-Routing Co-Design for Coflows Over General Graphs
	Coflow Identification Without Application Modification
	Decentralized Coflow Schedulers
	Decoupling Bandwidth and Latency for Hierarchical Coflow Scheduling
	Coflow-Aware Infrastructure Design
	Analyses of Concurrent Open Shop Scheduling With Coupled Resources
	Generalization to Multiple Resource Types
	Communication-Driven Application Design

	Final Remarks

	Coflows in Production
	The Facebook Trace
	Impact of Shuffle Coflows
	Coflow Characteristics
	Diversity of Coflow Structures
	Heavy-Tailed Distribution of Coflow Size

	Coflow Arrival Over Time and Concurrency

	Clairvoyant Inter-Coflow Scheduling
	Problem Formulation and Complexity in the Offline Case
	Tradeoffs in Optimizing CCT
	Ordering Properties of Coflow Schedules

	Non-Clairvoyant Inter-Coflow Scheduling
	Coflow Scheduling with Local Knowledge
	Continuous vs. Discretized Prioritization

	Fair Inter-Coflow Scheduling
	Dual Objectives for Fair Inter-Coflow Scheduling
	Work Conservation VS. Strategy-proofness Tradeoff
	Demand-Agnostic Policies
	Unfair Policies
	Locally Fair Policies

	Properties of HUG

	Bibliography

